IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0268950.html
   My bibliography  Save this article

On the Monte Carlo weights in multiple criteria decision analysis

Author

Listed:
  • Jiří Mazurek
  • Dominik Strzałka

Abstract

In multiple-criteria decision making/aiding/analysis (MCDM/MCDA) weights of criteria constitute a crucial input for finding an optimal solution (alternative). A large number of methods were proposed for criteria weights derivation including direct ranking, point allocation, pairwise comparisons, entropy method, standard deviation method, and so on. However, the problem of correct criteria weights setting persists, especially when the number of criteria is relatively high. The aim of this paper is to approach the problem of determining criteria weights from a different perspective: we examine what weights’ values have to be for a given alternative to be ranked the best. We consider a space of all feasible weights from which a large number of weights in the form of n−tuples is drawn randomly via Monte Carlo method. Then, we use predefined dominance relations for comparison and ranking of alternatives, which are based on the set of generated cases. Further on, we provide the estimates for a sample size so the results could be considered robust enough. At last, but not least, we introduce the concept of central weights and the measure of its robustness (stability) as well as the concept of alternatives’ multi-dominance, and show their application to a real-world problem of the selection of the best wind turbine.

Suggested Citation

  • Jiří Mazurek & Dominik Strzałka, 2022. "On the Monte Carlo weights in multiple criteria decision analysis," PLOS ONE, Public Library of Science, vol. 17(10), pages 1-18, October.
  • Handle: RePEc:plo:pone00:0268950
    DOI: 10.1371/journal.pone.0268950
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0268950
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0268950&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0268950?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Abbas Mardani & Ahmad Jusoh & Khalil MD Nor & Zainab Khalifah & Norhayati Zakwan & Alireza Valipour, 2015. "Multiple criteria decision-making techniques and their applications – a review of the literature from 2000 to 2014," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 28(1), pages 516-571, January.
    2. David E. Burmaster & Paul D. Anderson, 1994. "Principles of Good Practice for the Use of Monte Carlo Techniques in Human Health and Ecological Risk Assessments," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 477-481, August.
    3. Sajjad Zahir, M., 1991. "Incorporating the uncertainty of decision judgements in the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 53(2), pages 206-216, July.
    4. Csató, László & Petróczy, Dóra Gréta, 2021. "On the monotonicity of the eigenvector method," European Journal of Operational Research, Elsevier, vol. 292(1), pages 230-237.
    5. Aguaron, Juan & Moreno-Jimenez, Jose Maria, 2003. "The geometric consistency index: Approximated thresholds," European Journal of Operational Research, Elsevier, vol. 147(1), pages 137-145, May.
    6. Edmundas Kazimieras Zavadskas & Valentinas Podvezko, 2016. "Integrated Determination of Objective Criteria Weights in MCDM," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 267-283, March.
    7. Bice Cavallo, 2020. "Functional relations and Spearman correlation between consistency indices," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(2), pages 301-311, February.
    8. Ágoston, Kolos Csaba & Csató, László, 2022. "Inconsistency thresholds for incomplete pairwise comparison matrices," Omega, Elsevier, vol. 108(C).
    9. Jiří Mazurek & Radomír Perzina & Jaroslav Ramík & David Bartl, 2021. "A Numerical Comparison of the Sensitivity of the Geometric Mean Method, Eigenvalue Method, and Best–Worst Method," Mathematics, MDPI, vol. 9(5), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pawel Tadeusz Kazibudzki, 2023. "The uncertainty related to the inexactitude of prioritization based on consistent pairwise comparisons," PLOS ONE, Public Library of Science, vol. 18(9), pages 1-30, September.
    2. Ágoston, Kolos Csaba & Csató, László, 2024. "A lexicographically optimal completion for pairwise comparison matrices with missing entries," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1078-1086.
    3. Sangeeta Pant & Anuj Kumar & Mangey Ram & Yury Klochkov & Hitesh Kumar Sharma, 2022. "Consistency Indices in Analytic Hierarchy Process: A Review," Mathematics, MDPI, vol. 10(8), pages 1-15, April.
    4. Jiří Mazurek & Konrad Kulakowski, 2020. "Information gap in value propositions of business models of language schools," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(2), pages 77-89.
    5. Jan Górecki & David Bartl & Jaroslav Ramík, 2024. "Robustness of priority deriving methods for pairwise comparison matrices against rank reversal: a probabilistic approach," Annals of Operations Research, Springer, vol. 333(1), pages 249-273, February.
    6. Bergantiños, Gustavo & Moreno-Ternero, Juan D., 2022. "Monotonicity in sharing the revenues from broadcasting sports leagues," European Journal of Operational Research, Elsevier, vol. 297(1), pages 338-346.
    7. Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Valentinas Podvezko & Ieva Ubarte & Arturas Kaklauskas, 2017. "MCDM Assessment of a Healthy and Safe Built Environment According to Sustainable Development Principles: A Practical Neighborhood Approach in Vilnius," Sustainability, MDPI, vol. 9(5), pages 1-30, April.
    8. Olivier Chanel, 2022. "Impact of COVID‑19 Activity Restrictions on Air Pollution: Methodological Considerations in the Economic Valuation of the Long‑Term Effects on Mortality [Impact sur la pollution de l’air des restri," Working Papers hal-03778336, HAL.
    9. Levary, Reuven R. & Wan, Ke, 1999. "An analytic hierarchy process based simulation model for entry mode decision regarding foreign direct investment," Omega, Elsevier, vol. 27(6), pages 661-677, December.
    10. Ni, Lei & Chen, Yu-wang & de Brujin, Oscar, 2021. "Towards understanding socially influenced vaccination decision making: An integrated model of multiple criteria belief modelling and social network analysis," European Journal of Operational Research, Elsevier, vol. 293(1), pages 276-289.
    11. Janssen, Hans, 2013. "Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 123-132.
    12. Ricardo, Alexandre & Figueira, José Rui & Tavares, Luís Valadares, 2024. "Integrating confidence and preservation of information in the preference elicitation process: A lexicographic order approach for inconsistent judgments," Omega, Elsevier, vol. 129(C).
    13. Lundy, Michele & Siraj, Sajid & Greco, Salvatore, 2017. "The mathematical equivalence of the “spanning tree” and row geometric mean preference vectors and its implications for preference analysis," European Journal of Operational Research, Elsevier, vol. 257(1), pages 197-208.
    14. Pratibha Rani & Arunodaya Raj Mishra & Abbas Mardani & Fausto Cavallaro & Dalia Štreimikienė & Syed Abdul Rehman Khan, 2020. "Pythagorean Fuzzy SWARA–VIKOR Framework for Performance Evaluation of Solar Panel Selection," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    15. Timothy M. Barry, 1996. "Recommendations on the Testing and Use of Pseudo‐Random Number Generators Used in Monte Carlo Analysis for Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 16(1), pages 93-105, February.
    16. Marcio Pereira Basilio & Valdecy Pereira & Fatih Yigit, 2023. "New Hybrid EC-Promethee Method with Multiple Iterations of Random Weight Ranges: Applied to the Choice of Policing Strategies," Mathematics, MDPI, vol. 11(21), pages 1-34, October.
    17. Huibing Cheng & Shanshui Zheng & Jianghong Feng, 2022. "A Fuzzy Multi-Criteria Method for Sustainable Ferry Operator Selection: A Case Study," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    18. Olivier Chanel, 2022. "Impact of COVID-19 Activity Restrictions on Air Pollution: Methodological Considerations in the Economic Valuation of the Long-Term Effects on Mortality," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 534-35, pages 103-118.
    19. Rosenbloom, E. S., 1997. "A probabilistic interpretation of the final rankings in AHP," European Journal of Operational Research, Elsevier, vol. 96(2), pages 371-378, January.
    20. Frédéric Dor & Pascal Empereur‐Bissonnet & Denis Zmirou & Vincent Nedellec & Jean‐Marie Haguenoer & Frans Jongeneelen & Alain Person & William Dab & Colin Ferguson, 2003. "Validation of Multimedia Models Assessing Exposure to PAHs—The SOLEX Study," Risk Analysis, John Wiley & Sons, vol. 23(5), pages 1047-1057, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0268950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.