Algorithmic state surveillance: Challenging the notion of agency in human rights
Author
Abstract
Suggested Citation
DOI: 10.1111/rego.12331
Download full text from publisher
References listed on IDEAS
- Karen Yeung, 2018. "Algorithmic regulation: A critical interrogation," Regulation & Governance, John Wiley & Sons, vol. 12(4), pages 505-523, December.
- J. B. Heaton & N. G. Polson & J. H. Witte, 2017. "Deep learning for finance: deep portfolios," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 3-12, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Matus, Kira & Veale, Michael, 2022. "Certification Systems for Machine Learning: Lessons from Sustainability," SocArXiv pm3wy_v1, Center for Open Science.
- Ulbricht, Lena & Yeung, Karen, 2022. "Algorithmic regulation: A maturing concept for investigating regulation of and through algorithms," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 16(1), pages 3-22.
- Wernick, Alina & Artyushina, Anna, 2023. "Future-proofing the city: A human rightsbased approach to governing algorithmic, biometric and smart city technologies," Internet Policy Review: Journal on Internet Regulation, Alexander von Humboldt Institute for Internet and Society (HIIG), Berlin, vol. 12(1), pages 1-26.
- Kira J.M. Matus & Michael Veale, 2022. "Certification systems for machine learning: Lessons from sustainability," Regulation & Governance, John Wiley & Sons, vol. 16(1), pages 177-196, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
- Dolata, Ulrich & Schrape, Jan-Felix, 2022. "Platform architectures: The structuration of platform companies on the Internet," Research Contributions to Organizational Sociology and Innovation Studies, SOI Discussion Papers 2022-01, University of Stuttgart, Institute for Social Sciences, Department of Organizational Sociology and Innovation Studies.
- Diego Lopez-Bernal & David Balderas & Pedro Ponce & Arturo Molina, 2021. "Education 4.0: Teaching the Basics of KNN, LDA and Simple Perceptron Algorithms for Binary Classification Problems," Future Internet, MDPI, vol. 13(8), pages 1-14, July.
- Moews, Ben & Ibikunle, Gbenga, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
- Stefania Corsaro & Valentina De Simone & Zelda Marino & Salvatore Scognamiglio, 2022. "l 1 -Regularization in Portfolio Selection with Machine Learning," Mathematics, MDPI, vol. 10(4), pages 1-15, February.
- Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
- Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
- Jiang, Kangqi & Du, Xinyi & Chen, Zhongfei, 2022. "Firms' digitalization and stock price crash risk," International Review of Financial Analysis, Elsevier, vol. 82(C).
- Zhengyong Jiang & Jeyan Thiayagalingam & Jionglong Su & Jinjun Liang, 2023. "CAD: Clustering And Deep Reinforcement Learning Based Multi-Period Portfolio Management Strategy," Papers 2310.01319, arXiv.org.
- Teichmann, Fabian & Boticiu, Sonia & Sergi, Bruno S., 2023. "RegTech – Potential benefits and challenges for businesses," Technology in Society, Elsevier, vol. 72(C).
- Bruns, Hendrik & Perino, Grischa, 2023. "The role of autonomy and reactance for nudging — Experimentally comparing defaults to recommendations and mandates," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 106(C).
- Uddin, Ajim & Yu, Dantong, 2020. "Latent factor model for asset pricing," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
- Axelsson, Birger & Song, Han-Suck, 2023. "Univariate Forecasting for REITs with Deep Learning: A Comparative Analysis with an ARIMA Model," Working Paper Series 23/10, Royal Institute of Technology, Department of Real Estate and Construction Management & Banking and Finance, revised 14 Nov 2023.
- Jeroen van der Heijden, 2022. "The Value of Systems Thinking for and in Regulatory Governance: An Evidence Synthesis," SAGE Open, , vol. 12(2), pages 21582440221, June.
- Yunan Ye & Hengzhi Pei & Boxin Wang & Pin-Yu Chen & Yada Zhu & Jun Xiao & Bo Li, 2020. "Reinforcement-Learning based Portfolio Management with Augmented Asset Movement Prediction States," Papers 2002.05780, arXiv.org.
- Jiayang Yu & Kuo-Chu Chang, 2020. "Neural Network Predictive Modeling on Dynamic Portfolio Management—A Simulation-Based Portfolio Optimization Approach," JRFM, MDPI, vol. 13(11), pages 1-23, November.
- Landry Frank Ineza Havugimana & Bolan Liu & Fanshuo Liu & Junwei Zhang & Ben Li & Peng Wan, 2023. "Review of Artificial Intelligent Algorithms for Engine Performance, Control, and Diagnosis," Energies, MDPI, vol. 16(3), pages 1-25, January.
- Marta Fana & Davide Villani, 2023. "Is it all the same? Types of innovation and their relationship with direct control, technical control and algorithmic management," European Journal of Industrial Relations, , vol. 29(4), pages 367-391, December.
- Werner Kristjanpoller & Kevin Michell & Cristian Llanos & Marcel C. Minutolo, 2025. "Incorporating causal notions to forecasting time series: a case study," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-22, December.
- Huh, Jeonggyu, 2020. "Measuring systematic risk with neural network factor model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:reggov:v:16:y:2022:i:1:p:212-224. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1748-5991 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.