IDEAS home Printed from https://ideas.repec.org/a/wly/quante/v14y2023i4p1199-1220.html
   My bibliography  Save this article

Local projections, autocorrelation, and efficiency

Author

Listed:
  • Amaze Lusompa

Abstract

It is well known that Local Projections (LP) residuals are autocorrelated. Conventional wisdom says that LP have to be estimated by OLS and that GLS is not possible because the autocorrelation process is unknown and/or because the GLS estimator would be inconsistent. I show that the autocorrelation process of LP can be written as a Vector Moving Average (VMA) process of the Wold errors and impulse responses and that autocorrelation can be corrected for using a consistent GLS estimator. Monte Carlo simulations show that estimating LP with GLS can lead to more efficient estimates.

Suggested Citation

  • Amaze Lusompa, 2023. "Local projections, autocorrelation, and efficiency," Quantitative Economics, Econometric Society, vol. 14(4), pages 1199-1220, November.
  • Handle: RePEc:wly:quante:v:14:y:2023:i:4:p:1199-1220
    DOI: 10.3982/QE1988
    as

    Download full text from publisher

    File URL: https://doi.org/10.3982/QE1988
    Download Restriction: no

    File URL: https://libkey.io/10.3982/QE1988?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter & Hodrick, Robert J, 1980. "Forward Exchange Rates as Optimal Predictors of Future Spot Rates: An Econometric Analysis," Journal of Political Economy, University of Chicago Press, vol. 88(5), pages 829-853, October.
    2. Brüggemann, Ralf & Jentsch, Carsten & Trenkler, Carsten, 2016. "Inference in VARs with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 191(1), pages 69-85.
    3. Òscar Jordà & Sharon Kozicki, 2011. "Estimation And Inference By The Method Of Projection Minimum Distance: An Application To The New Keynesian Hybrid Phillips Curve," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(2), pages 461-487, May.
    4. Lewis, Richard & Reinsel, Gregory C., 1985. "Prediction of multivariate time series by autoregressive model fitting," Journal of Multivariate Analysis, Elsevier, vol. 16(3), pages 393-411, June.
    5. Mark Gertler & Peter Karadi, 2015. "Monetary Policy Surprises, Credit Costs, and Economic Activity," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(1), pages 44-76, January.
    6. Mikkel Plagborg‐Møller & Christian K. Wolf, 2021. "Local Projections and VARs Estimate the Same Impulse Responses," Econometrica, Econometric Society, vol. 89(2), pages 955-980, March.
    7. Eben Lazarus & Daniel J. Lewis & James H. Stock & Mark W. Watson, 2018. "HAR Inference: Recommendations for Practice," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 541-559, October.
    8. Lutkepohl, Helmut, 1990. "Asymptotic Distributions of Impulse Response Functions and Forecast Error Variance Decompositions of Vector Autoregressive Models," The Review of Economics and Statistics, MIT Press, vol. 72(1), pages 116-125, February.
    9. Eben Lazarus & Daniel J. Lewis & James H. Stock & Mark W. Watson, 2018. "HAR Inference: Recommendations for Practice Rejoinder," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 574-575, October.
    10. Valerie A. Ramey & Sarah Zubairy, 2018. "Government Spending Multipliers in Good Times and in Bad: Evidence from US Historical Data," Journal of Political Economy, University of Chicago Press, vol. 126(2), pages 850-901.
    11. Lutz Kilian & Yun Jung Kim, 2011. "How Reliable Are Local Projection Estimators of Impulse Responses?," The Review of Economics and Statistics, MIT Press, vol. 93(4), pages 1460-1466, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Borağan Aruoba & Thomas Drechsel, 2024. "The Long and Variable Lags of Monetary Policy: Evidence from Disaggregated Price Indices," NBER Chapters, in: Inflation in the COVID Era and Beyond, National Bureau of Economic Research, Inc.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Dake & Plagborg-Møller, Mikkel & Wolf, Christian K., 2024. "Local projections vs. VARs: Lessons from thousands of DGPs," Journal of Econometrics, Elsevier, vol. 244(2).
    2. Masahiro Tanaka, 2025. "Quasi-Bayesian Local Projections: Simultaneous Inference and Extension to the Instrumental Variable Method," Papers 2503.20249, arXiv.org.
    3. Jörg Breitung & Ralf Brüggemann, 2023. "Projection Estimators for Structural Impulse Responses," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(6), pages 1320-1340, December.
    4. Lusompa, Amaze, 2019. "Local Projections, Autocorrelation, and Efficiency," MPRA Paper 99856, University Library of Munich, Germany, revised 11 Apr 2020.
    5. Lenard Lieb & Adam Jassem & Rui Jorge Almeida & Nalan Baştürk & Stephan Smeekes, 2025. "Min(d)ing the President: A Text Analytic Approach to Measuring Tax News," American Economic Journal: Macroeconomics, American Economic Association, vol. 17(2), pages 285-314, April.
    6. Mikkel Plagborg‐Møller & Christian K. Wolf, 2021. "Local Projections and VARs Estimate the Same Impulse Responses," Econometrica, Econometric Society, vol. 89(2), pages 955-980, March.
    7. Mikkel Plagborg-Møller & Christian K. Wolf, 2022. "Instrumental Variable Identification of Dynamic Variance Decompositions," Journal of Political Economy, University of Chicago Press, vol. 130(8), pages 2164-2202.
    8. NAM, Deokwoo & LI, Xiaole, 2024. "The Stimulative Effects of Anticipated Government Spending Expansions : Evidence from Survey Forecasts," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 65(1), pages 1-31, June.
    9. De Santis, Roberto A. & Tornese, Tommaso, 2024. "US monetary policy is more powerful in low economic growth regimes," Working Paper Series 2919, European Central Bank.
    10. José Luis Montiel Olea & Mikkel Plagborg‐Møller, 2021. "Local Projection Inference Is Simpler and More Robust Than You Think," Econometrica, Econometric Society, vol. 89(4), pages 1789-1823, July.
    11. Herbst, Edward P. & Johannsen, Benjamin K., 2024. "Bias in local projections," Journal of Econometrics, Elsevier, vol. 240(1).
    12. Brüggemann, Ralf & Jentsch, Carsten & Trenkler, Carsten, 2016. "Inference in VARs with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 191(1), pages 69-85.
    13. Firmin Doko Tchatoka & Qazi Haque, 2024. "Revisiting the Macroeconomic Effects of Monetary Policy Shocks," The Economic Record, The Economic Society of Australia, vol. 100(329), pages 234-259, June.
    14. Yoosoon Chang & Yongok Choi & Chang Sik Kim & J. Isaac Miller & Joon Y. Park, 2024. "Common Trends and Country Specific Heterogeneities in Long-Run World Energy Consumption," Working Papers No 01/2024, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    15. Martin Bruns & Helmut Lütkepohl, 2023. "An Alternative Bootstrap for Proxy Vector Autoregressions," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1857-1882, December.
    16. Alisdair McKay & Christian K. Wolf, 2023. "What Can Time‐Series Regressions Tell Us About Policy Counterfactuals?," Econometrica, Econometric Society, vol. 91(5), pages 1695-1725, September.
    17. Breitenlechner, Max & Geiger, Martin & Scharler, Johann, 2022. "Bank liquidity and the propagation of uncertainty in the U.S," Finance Research Letters, Elsevier, vol. 46(PB).
    18. Mario Di Serio & Matteo Fragetta & Emanuel Gasteiger & Giovanni Melina, 2024. "The Euro Area Government Spending Multiplier in Demand‐ and Supply‐Driven Recessions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(6), pages 1342-1372, December.
    19. Fève, Patrick & Collard, Fabrice & Guay, Alain, 2024. "Believe it or not, it’s all about Beliefs!," TSE Working Papers 24-1539, Toulouse School of Economics (TSE).
    20. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:quante:v:14:y:2023:i:4:p:1199-1220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.