IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v53y2006i6p588-599.html
   My bibliography  Save this article

Modeling and analysis of uncertain time‐critical tasking problems

Author

Listed:
  • Donald P. Gaver
  • Patricia A. Jacobs
  • Gennady Samorodnitsky
  • Kevin D. Glazebrook

Abstract

This paper describes modeling and operational analysis of a generic asymmetric service‐system situation in which (a) Red agents, potentially threatening, but in another but important interpretation, are isolated friendlies, such as downed pilots, that require assistance and “arrive” according to some partially known and potentially changing pattern in time and space; and (b) Reds have effectively limited unknown deadlines or times of availability for Blue service, i.e., detection, classification, and attack in a military setting or emergency assistance in others. We discuss various service options by Blue service agents and devise several approximations allowing one to compute efficiently those proportions of tasks of different classes that are successfully served or, more generally, if different rewards are associated with different classes of tasks, the percentage of the possible reward gained. We suggest heuristic policies for a Blue server to select the next task to perform and to decide how much time to allocate to that service. We discuss this for a number of specific examples. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006.

Suggested Citation

  • Donald P. Gaver & Patricia A. Jacobs & Gennady Samorodnitsky & Kevin D. Glazebrook, 2006. "Modeling and analysis of uncertain time‐critical tasking problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(6), pages 588-599, September.
  • Handle: RePEc:wly:navres:v:53:y:2006:i:6:p:588-599
    DOI: 10.1002/nav.20162
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20162
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ward Whitt, 1999. "Improving Service by Informing Customers About Anticipated Delays," Management Science, INFORMS, vol. 45(2), pages 192-207, February.
    2. Becker, K. J. & Gaver, D. P. & Glazebrook, K. D. & Jacobs, P. A. & Lawphongpanich, S., 2000. "Allocation of tasks to specialized processors: A planning approach," European Journal of Operational Research, Elsevier, vol. 126(1), pages 80-88, October.
    3. John S. Osmundson, 2000. "A systems engineering methodology for information systems," Systems Engineering, John Wiley & Sons, vol. 3(2), pages 68-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Terry James & Kevin Glazebrook & Kyle Lin, 2016. "Developing Effective Service Policies for Multiclass Queues with Abandonment: Asymptotic Optimality and Approximate Policy Improvement," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 251-264, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rouba Ibrahim & Mor Armony & Achal Bassamboo, 2017. "Does the Past Predict the Future? The Case of Delay Announcements in Service Systems," Management Science, INFORMS, vol. 63(6), pages 1762-1780, June.
    2. Rouba Ibrahim & Ward Whitt, 2011. "Wait-Time Predictors for Customer Service Systems with Time-Varying Demand and Capacity," Operations Research, INFORMS, vol. 59(5), pages 1106-1118, October.
    3. Qiuping Yu & Gad Allon & Achal Bassamboo & Seyed Iravani, 2018. "Managing Customer Expectations and Priorities in Service Systems," Management Science, INFORMS, vol. 64(8), pages 3942-3970, August.
    4. Pengfei Guo & Paul Zipkin, 2007. "Analysis and Comparison of Queues with Different Levels of Delay Information," Management Science, INFORMS, vol. 53(6), pages 962-970, June.
    5. Jouini, Oualid & Dallery, Yves & Aksin, Zeynep, 2009. "Queueing models for full-flexible multi-class call centers with real-time anticipated delays," International Journal of Production Economics, Elsevier, vol. 120(2), pages 389-399, August.
    6. Pengfei Guo & Zhe George Zhang, 2013. "Strategic Queueing Behavior and Its Impact on System Performance in Service Systems with the Congestion-Based Staffing Policy," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 118-131, September.
    7. Qiuping Yu & Gad Allon & Achal Bassamboo, 2017. "How Do Delay Announcements Shape Customer Behavior? An Empirical Study," Management Science, INFORMS, vol. 63(1), pages 1-20, January.
    8. Chester Chambers & Panagiotis Kouvelis, 2006. "Modeling and Managing the Percentage of Satisfied Customers in Hidden and Revealed Waiting Line Systems," Production and Operations Management, Production and Operations Management Society, vol. 15(1), pages 103-116, March.
    9. Oualid Jouini & Zeynep Akşin & Yves Dallery, 2011. "Call Centers with Delay Information: Models and Insights," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 534-548, October.
    10. Siddharth Prakash Singh & Mohammad Delasay & Alan Scheller‐Wolf, 2023. "Real‐time delay announcement under competition," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 863-881, March.
    11. Athanasia Manou & Antonis Economou & Fikri Karaesmen, 2014. "Strategic Customers in a Transportation Station: When Is It Optimal to Wait?," Operations Research, INFORMS, vol. 62(4), pages 910-925, August.
    12. Achal Bassamboo & J. Michael Harrison & Assaf Zeevi, 2009. "Pointwise Stationary Fluid Models for Stochastic Processing Networks," Manufacturing & Service Operations Management, INFORMS, vol. 11(1), pages 70-89, August.
    13. Veeraruna Kavitha & Jayakrishnan Nair & Raman Kumar Sinha, 2019. "Pseudo conservation for partially fluid, partially lossy queueing systems," Annals of Operations Research, Springer, vol. 277(2), pages 255-292, June.
    14. Yong Tan & Kamran Moinzadeh & Vijay S. Mookerjee, 2005. "Optimal Processing Policies for an e-Commerce Web Server," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 99-110, February.
    15. Zeynep Akşin & Barış Ata & Seyed Morteza Emadi & Che-Lin Su, 2013. "Structural Estimation of Callers' Delay Sensitivity in Call Centers," Management Science, INFORMS, vol. 59(12), pages 2727-2746, December.
    16. Karen Donohue & Özalp Özer, 2020. "Behavioral Operations: Past, Present, and Future," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 191-202, January.
    17. Wang, Jinting & Zhang, Feng, 2013. "Strategic joining in M/M/1 retrial queues," European Journal of Operational Research, Elsevier, vol. 230(1), pages 76-87.
    18. Rouba Ibrahim, 2018. "Sharing delay information in service systems: a literature survey," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 49-79, June.
    19. Stefan Helber & Raik Stolletz & Sophie Bothe, 2005. "Erfolgszielorientierte Agentenallokation in Inbound Call-Centern," Schmalenbach Journal of Business Research, Springer, vol. 57(1), pages 3-32, February.
    20. Vasiliki Kostami & Amy R. Ward, 2009. "Managing Service Systems with an Offline Waiting Option and Customer Abandonment," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 644-656, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:53:y:2006:i:6:p:588-599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.