IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v44y2025i6p2017-2036.html
   My bibliography  Save this article

Stock Return Prediction Based on a Functional Capital Asset Pricing Model

Author

Listed:
  • Ufuk Beyaztas
  • Kaiying Ji
  • Han Lin Shang
  • Eliza Wu

Abstract

The capital asset pricing model (CAPM) is readily used to capture a linear relationship between the daily returns of an asset and a market index. We extend this model to an intraday high‐frequency setting by proposing a functional CAPM estimation approach. The functional CAPM is a stylized example of a function‐on‐function linear regression with a bivariate functional regression coefficient. The two‐dimensional regression coefficient measures the cross‐covariance between cumulative intraday asset returns and market returns. We apply it to the Standard and Poor's 500 index and its constituent stocks to demonstrate its practicality. We investigate the functional CAPM's in‐sample goodness of fit and out‐of‐sample prediction for an asset's cumulative intraday return. The findings suggest that the proposed functional CAPM methods have superior model goodness of fit and forecast accuracy compared to the traditional CAPM empirical estimation. In particular, the functional methods produce better model goodness of fit and prediction accuracy for stocks traditionally considered less price efficient or more information opaque.

Suggested Citation

  • Ufuk Beyaztas & Kaiying Ji & Han Lin Shang & Eliza Wu, 2025. "Stock Return Prediction Based on a Functional Capital Asset Pricing Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(6), pages 2017-2036, September.
  • Handle: RePEc:wly:jforec:v:44:y:2025:i:6:p:2017-2036
    DOI: 10.1002/for.3282
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3282
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3282?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Harrison Hong & Terence Lim & Jeremy C. Stein, 2000. "Bad News Travels Slowly: Size, Analyst Coverage, and the Profitability of Momentum Strategies," Journal of Finance, American Finance Association, vol. 55(1), pages 265-295, February.
    2. Crainiceanu, Ciprian M. & Staicu, Ana-Maria & Di, Chong-Zhi, 2009. "Generalized Multilevel Functional Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1550-1561.
    3. François Derrien & Ambrus Kecskés, 2013. "The Real Effects of Financial Shocks: Evidence from Exogenous Changes in Analyst Coverage," Journal of Finance, American Finance Association, vol. 68(4), pages 1407-1440, August.
    4. Thomas Gilbert & Christopher Hrdlicka & Jonathan Kalodimos & Stephan Siegel, 2014. "Daily Data is Bad for Beta: Opacity and Frequency-Dependent Betas," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 4(1), pages 78-117.
    5. D'Souza, Rudolph E & Brooks, LeRoy D & Oberhelman, H Dennis, 1989. "A General Stationary Stochastic Regression Model for Estimating and Predicting Beta," The Financial Review, Eastern Finance Association, vol. 24(2), pages 299-317, May.
    6. Han Lin Shang & Jiguo Cao & Peijun Sang, 2022. "Stopping time detection of wood panel compression: A functional time‐series approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1205-1224, November.
    7. Peter Hall & Céline Vial, 2006. "Assessing the finite dimensionality of functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(4), pages 689-705, September.
    8. Ball, Ray & Kothari, S. P., 1989. "Nonstationary expected returns : Implications for tests of market efficiency and serial correlation in returns," Journal of Financial Economics, Elsevier, vol. 25(1), pages 51-74, November.
    9. Jonathan Fletcher, 2002. "Examination of Conditional Asset Pricing in UK Stock Returns," The Financial Review, Eastern Finance Association, vol. 37(3), pages 447-468, August.
    10. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    11. Oliver Boguth & Murray Carlson & Adlai Fisher & Mikhail Simutin, 2016. "Horizon Effects in Average Returns: The Role of Slow Information Diffusion," The Review of Financial Studies, Society for Financial Studies, vol. 29(8), pages 2241-2281.
    12. Andreou, Elena & Ghysels, Eric, 2002. "Rolling-Sample Volatility Estimators: Some New Theoretical, Simulation, and Empirical Results," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 363-376, July.
    13. Dimson, Elroy, 1979. "Risk measurement when shares are subject to infrequent trading," Journal of Financial Economics, Elsevier, vol. 7(2), pages 197-226, June.
    14. Torben G. Andersen & Tao Su & Viktor Todorov & Zhiyuan Zhang, 2024. "Intraday Periodic Volatility Curves," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(546), pages 1181-1191, April.
    15. Jonathan Brogaard & Thanh Huong Nguyen & Talis J Putnins & Eliza Wu, 2022. "What Moves Stock Prices? The Roles of News, Noise, and Information," The Review of Financial Studies, Society for Financial Studies, vol. 35(9), pages 4341-4386.
    16. Brogaard, Jonathan & Carrion, Allen & Moyaert, Thibaut & Riordan, Ryan & Shkilko, Andriy & Sokolov, Konstantin, 2018. "High frequency trading and extreme price movements," Journal of Financial Economics, Elsevier, vol. 128(2), pages 253-265.
    17. Wang, Shanshan & Jank, Wolfgang & Shmueli, Galit, 2008. "Explaining and Forecasting Online Auction Prices and Their Dynamics Using Functional Data Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 144-160, April.
    18. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    19. Wood, Robert A, 2000. "Market Microstructure Research Databases: History and Projections," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 140-145, April.
    20. Han Lin Shang & Yang Yang & Fearghal Kearney, 2019. "Intraday forecasts of a volatility index: functional time series methods with dynamic updating," Annals of Operations Research, Springer, vol. 282(1), pages 331-354, November.
    21. repec:bla:jfinan:v:53:y:1998:i:2:p:549-573 is not listed on IDEAS
    22. Papavassiliou, Vassilios G., 2013. "A new method for estimating liquidity risk: Insights from a liquidity-adjusted CAPM framework," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 24(C), pages 184-197.
    23. Ji Zhou & Alex Paseka, 2017. "Unconditional Tests of Linear Asset Pricing Models with Time-Varying Betas," The Financial Review, Eastern Finance Association, vol. 52(3), pages 373-404, August.
    24. Gregory Rice & Tony Wirjanto & Yuqian Zhao, 2020. "Tests for conditional heteroscedasticity of functional data," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 733-758, November.
    25. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    26. He, Jie (Jack) & Tian, Xuan, 2013. "The dark side of analyst coverage: The case of innovation," Journal of Financial Economics, Elsevier, vol. 109(3), pages 856-878.
    27. Bollerslev, Tim & Zhang, Benjamin Y. B., 2003. "Measuring and modeling systematic risk in factor pricing models using high-frequency data," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 533-558, December.
    28. Bollerslev, Tim & Li, Sophia Zhengzi & Todorov, Viktor, 2016. "Roughing up beta: Continuous versus discontinuous betas and the cross section of expected stock returns," Journal of Financial Economics, Elsevier, vol. 120(3), pages 464-490.
    29. Kevin Q. Wang, 2003. "Asset Pricing with Conditioning Information: A New Test," Journal of Finance, American Finance Association, vol. 58(1), pages 161-196, February.
    30. Fabian Hollstein & Marcel Prokopczuk & Chardin Wese Simen, 2020. "The Conditional Capital Asset Pricing Model Revisited: Evidence from High-Frequency Betas," Management Science, INFORMS, vol. 66(6), pages 2474-2494, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabian Hollstein & Marcel Prokopczuk & Chardin Wese Simen, 2020. "The Conditional Capital Asset Pricing Model Revisited: Evidence from High-Frequency Betas," Management Science, INFORMS, vol. 66(6), pages 2474-2494, June.
    2. Bollerslev, Tim & Zhang, Benjamin Y. B., 2003. "Measuring and modeling systematic risk in factor pricing models using high-frequency data," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 533-558, December.
    3. Michiel de Pooter & Martin Martens & Dick van Dijk, 2008. "Predicting the Daily Covariance Matrix for S&P 100 Stocks Using Intraday Data—But Which Frequency to Use?," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 199-229.
    4. Han Lin Shang & Kaiying Ji, 2023. "Forecasting intraday financial time series with sieve bootstrapping and dynamic updating," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 1973-1988, December.
    5. Ang, Andrew & Kristensen, Dennis, 2012. "Testing conditional factor models," Journal of Financial Economics, Elsevier, vol. 106(1), pages 132-156.
    6. Semenov, Andrei, 2021. "Measuring the stock's factor beta and identifying risk factors under market inefficiency," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 635-649.
    7. Ozcan Ceylan, 2015. "Limited information-processing capacity and asymmetric stock correlations," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1031-1039, June.
    8. Tim Bollerslev & Sophia Zhengzi Li & Viktor Todorov, 2014. "Roughing up Beta: Continuous vs. Discontinuous Betas, and the Cross-Section of Expected Stock Returns," CREATES Research Papers 2014-48, Department of Economics and Business Economics, Aarhus University.
    9. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
    10. Fulvio Corsi & Stefano Peluso & Francesco Audrino, 2015. "Missing in Asynchronicity: A Kalman‐em Approach for Multivariate Realized Covariance Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(3), pages 377-397, April.
    11. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    12. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    13. Stavros Degiannakis & Evdokia Xekalaki, 2007. "Assessing the performance of a prediction error criterion model selection algorithm in the context of ARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 17(2), pages 149-171.
    14. Ilze Kalnina, 2023. "Inference for Nonparametric High-Frequency Estimators with an Application to Time Variation in Betas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 538-549, April.
    15. Bali, Turan G. & Weinbaum, David, 2007. "A conditional extreme value volatility estimator based on high-frequency returns," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 361-397, February.
    16. S. Sanfelici & M. E. Mancino, 2008. "Covariance estimation via Fourier method in the presence of asynchronous trading and microstructure noise," Economics Department Working Papers 2008-ME01, Department of Economics, Parma University (Italy).
    17. Fulvio Corsi & Francesco Audrino, 2012. "Realized Covariance Tick-by-Tick in Presence of Rounded Time Stamps and General Microstructure Effects," Journal of Financial Econometrics, Oxford University Press, vol. 10(4), pages 591-616, September.
    18. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," PIER Working Paper Archive 03-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Sep 2003.
    19. Elena Ivona Dumitrescu & Georgiana-Denisa Banulescu, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," Post-Print hal-03331122, HAL.
    20. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:44:y:2025:i:6:p:2017-2036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.