IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v44y2025i2p270-280.html
   My bibliography  Save this article

Demand Forecasting New Fashion Products: A Review Paper

Author

Listed:
  • Anitha S.
  • Neelakandan R.

Abstract

New product demand forecasting is an important but challenging process that extends to multiple sectors. The paper reviews various forecasting models across different domains, emphasizing the unique challenges of forecasting new fashion products. The challenges are multifaceted and subject to constant change, including consumer preferences, seasonality, and the influence of social media. Understanding such difficulties enables us to provide an approach for improved and flexible prediction techniques. Machine learning techniques have the potential to address these issues and improve the accuracy of fashion product demand forecasting. Various advanced algorithms, including deep learning approaches and ensemble methods, employ large datasets and real‐time data to predict demand patterns accurately. The paper suggests valuable information to experts, researchers, and decision‐makers in the fashion industry, as it addresses the unique challenges and examines innovative solutions in new product forecasting.

Suggested Citation

  • Anitha S. & Neelakandan R., 2025. "Demand Forecasting New Fashion Products: A Review Paper," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 270-280, March.
  • Handle: RePEc:wly:jforec:v:44:y:2025:i:2:p:270-280
    DOI: 10.1002/for.3192
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3192
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Majd Kharfan & Vicky Wing Kei Chan & Tugba Firdolas Efendigil, 2021. "A data-driven forecasting approach for newly launched seasonal products by leveraging machine-learning approaches," Annals of Operations Research, Springer, vol. 303(1), pages 159-174, August.
    2. Cheng-Hong Yang & Bo-Hong Chen & Chih-Hsien Wu & Kuo-Chang Chen & Li-Yeh Chuang, 2022. "Deep Learning for Forecasting Electricity Demand in Taiwan," Mathematics, MDPI, vol. 10(14), pages 1-19, July.
    3. Thomassey, Sébastien, 2010. "Sales forecasts in clothing industry: The key success factor of the supply chain management," International Journal of Production Economics, Elsevier, vol. 128(2), pages 470-483, December.
    4. Lee, Hakyeon & Kim, Sang Gook & Park, Hyun-woo & Kang, Pilsung, 2014. "Pre-launch new product demand forecasting using the Bass model: A statistical and machine learning-based approach," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 49-64.
    5. Jason Acimovic & Francisco Erize & Kejia Hu & Douglas J. Thomas & Jan A. Van Mieghem, 2019. "Product Life Cycle Data Set: Raw and Cleaned Data of Weekly Orders for Personal Computers," Service Science, INFORMS, vol. 21(1), pages 171-176, January.
    6. Ulrich, Matthias & Jahnke, Hermann & Langrock, Roland & Pesch, Robert & Senge, Robin, 2022. "Classification-based model selection in retail demand forecasting," International Journal of Forecasting, Elsevier, vol. 38(1), pages 209-223.
    7. Jin, Byoungho Ellie & Shin, Daeun Chloe, 2020. "Changing the game to compete: Innovations in the fashion retail industry from the disruptive business model," Business Horizons, Elsevier, vol. 63(3), pages 301-311.
    8. Kahn, Kenneth B., 2014. "Solving the problems of new product forecasting," Business Horizons, Elsevier, vol. 57(5), pages 607-615.
    9. Marshall Fisher & Ananth Raman, 1996. "Reducing the Cost of Demand Uncertainty Through Accurate Response to Early Sales," Operations Research, INFORMS, vol. 44(1), pages 87-99, February.
    10. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    11. Meeran, Sheik & Jahanbin, Semco & Goodwin, Paul & Quariguasi Frota Neto, Joao, 2017. "When do changes in consumer preferences make forecasts from choice-based conjoint models unreliable?," European Journal of Operational Research, Elsevier, vol. 258(2), pages 512-524.
    12. Chandadevi Giri & Yan Chen, 2022. "Deep Learning for Demand Forecasting in the Fashion and Apparel Retail Industry," Forecasting, MDPI, vol. 4(2), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Iftekharul Alam Efat & Petr Hajek & Mohammad Zoynul Abedin & Rahat Uddin Azad & Md. Al Jaber & Shuvra Aditya & Mohammad Kabir Hassan, 2024. "Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales," Annals of Operations Research, Springer, vol. 339(1), pages 297-328, August.
    2. Liu, Xueying & Madlener, Reinhard, 2019. "Get Ready for Take-Off: A Two-Stage Model of Aircraft Market Diffusion," FCN Working Papers 15/2019, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    3. Rina Tanaka & Aya Ishigaki & Tomomichi Suzuki & Masato Hamada & Wataru Kawai, 2019. "Data Analysis of Shipment for Textiles and Apparel from Logistics Warehouse to Store Considering Disposal Risk," Sustainability, MDPI, vol. 11(1), pages 1-14, January.
    4. Dai, Hongyan & Xiao, Qin & Chen, Songlin & Zhou, Weihua, 2023. "Data-driven demand forecast for O2O operations: An adaptive hierarchical incremental approach," International Journal of Production Economics, Elsevier, vol. 259(C).
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Berrin Aytac & S. Wu, 2013. "Characterization of demand for short life-cycle technology products," Annals of Operations Research, Springer, vol. 203(1), pages 255-277, March.
    7. Oliver Schaer & Nikolaos Kourentzes & Robert Fildes, 2022. "Predictive competitive intelligence with prerelease online search traffic," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3823-3839, October.
    8. B Aytac & S D Wu, 2011. "Modelling high-tech product life cycles with short-term demand information: a case study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 425-432, March.
    9. Singhal, Shakshi & Anand, Adarsh & Singh, Ompal, 2020. "Studying dynamic market size-based adoption modeling & product diffusion under stochastic environment," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    10. Swaminathan, Kritika & Venkitasubramony, Rakesh, 2024. "Demand forecasting for fashion products: A systematic review," International Journal of Forecasting, Elsevier, vol. 40(1), pages 247-267.
    11. Georgia Perakis & Guillaume Roels, 2008. "Regret in the Newsvendor Model with Partial Information," Operations Research, INFORMS, vol. 56(1), pages 188-203, February.
    12. Sohn, So Young & Lim, Michael, 2008. "The effect of forecasting and information sharing in SCM for multi-generation products," European Journal of Operational Research, Elsevier, vol. 186(1), pages 276-287, April.
    13. Mark E. Ferguson & Gregory A. DeCroix & Paul H. Zipkin, 2005. "Commitment decisions with partial information updating," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(8), pages 780-795, December.
    14. Jia Liu & Cuixia Li, 2023. "Dynamic Game Analysis on Cooperative Advertising Strategy in a Manufacturer-Led Supply Chain with Risk Aversion," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
    15. He, Haonan & Wang, Shanyong, 2019. "Cost-benefit associations in consumer inventory problem with uncertain benefit," Journal of Retailing and Consumer Services, Elsevier, vol. 51(C), pages 271-284.
    16. Işık Biçer & Florian Lücker & Tamer Boyacı, 2022. "Beyond Retail Stores: Managing Product Proliferation along the Supply Chain," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1135-1156, March.
    17. Tommaso Elli & Alessandra Spagnoli & Valeria Maria Iannilli, 2024. "Mapping Service-Based Retailing to Improve Sustainability Practices in the Fashion Industry," Sustainability, MDPI, vol. 16(17), pages 1-20, August.
    18. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    19. Weng, Z. Kevin, 2004. "Coordinating order quantities between the manufacturer and the buyer: A generalized newsvendor model," European Journal of Operational Research, Elsevier, vol. 156(1), pages 148-161, July.
    20. Saurabh Bansal & Mahesh Nagarajan, 2017. "Product Portfolio Management with Production Flexibility in Agribusiness," Operations Research, INFORMS, vol. 65(4), pages 914-930, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:44:y:2025:i:2:p:270-280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.