IDEAS home Printed from https://ideas.repec.org/a/wly/isacfm/v31y2024i4ne70000.html
   My bibliography  Save this article

Evaluation of the Financial Distress of Hospitals Through Machine Learning: An Application of AI in Healthcare Industry

Author

Listed:
  • Nurettin Oner
  • Ferhat D. Zengul
  • Ismail Agirbas

Abstract

Due to the intricate nature of hospital structures, the examination of factors contributing to financial distress necessitates more advanced methodologies than conventional approaches. Recent advancements in artificial intelligence, specifically machine learning algorithms, offer alternative means of analyzing patterns in these factors to assess hospital financial distress. This study employs various machine learning algorithms to forecast financial distress, as measured by the Altman Z score, for hospitals in Turkey. Prediction models were constructed using decision trees, random forests, K‐nearest neighbors, artificial neural networks, support vector machines, and lasso regression algorithms. The findings indicate that the most effective classifiers for predicting hospital financial distress were lasso regression and random forest. Additionally, financial factors, competition, and socioeconomic development level emerged as significant determinants in forecasting hospital financial distress.

Suggested Citation

  • Nurettin Oner & Ferhat D. Zengul & Ismail Agirbas, 2024. "Evaluation of the Financial Distress of Hospitals Through Machine Learning: An Application of AI in Healthcare Industry," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(4), December.
  • Handle: RePEc:wly:isacfm:v:31:y:2024:i:4:n:e70000
    DOI: 10.1002/isaf.70000
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/isaf.70000
    Download Restriction: no

    File URL: https://libkey.io/10.1002/isaf.70000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    2. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    3. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    4. Harlan Platt & Marjorie Platt, 2002. "Predicting corporate financial distress: Reflections on choice-based sample bias," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 26(2), pages 184-199, June.
    5. Kose John, 1993. "Managing Financial Distress and Valuing Distressed Securities: A Survey and a Research Agenda," Financial Management, Financial Management Association, vol. 22(3), Fall.
    6. David L. Olson & Dursun Delen, 2008. "Advanced Data Mining Techniques," Springer Books, Springer, number 978-3-540-76917-0, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Ianni & Gianluca Marullo & Stefania Migliori & Francesco De Luca, 2021. "I modelli predittivi della crisi e dell?insolvenza aziendale. Una systematic review," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2021(2), pages 127-146.
    2. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    3. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    4. Tamara Ayœs, Armando Lenin & Villegas, Gladis Cecilia & Leones Castro, María Cristina & Salazar Bocanegra, Juan Antonio, 2018. "Modelaci—n del riesgo de insolvencia en empresas del sector salud empleando modelos logit || Modeling of Insolvency Risk in Health Sector Companies Using Logit Models," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 128-145, Diciembre.
    5. du Jardin, Philippe, 2009. "Bankruptcy prediction models: How to choose the most relevant variables?," MPRA Paper 44380, University Library of Munich, Germany.
    6. Harlan D. Platt & Marjorie B. Platt, 2008. "Financial Distress Comparison Across Three Global Regions," JRFM, MDPI, vol. 1(1), pages 1-34, December.
    7. Rassoul Yazdipour & Richard Constand, 2010. "Predicting Firm Failure: A Behavioral Finance Perspective," Journal of Entrepreneurial Finance, Pepperdine University, Graziadio School of Business and Management, vol. 14(3), pages 90-104, Fall.
    8. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    9. Nadine Levratto & Luc Tessier & Messaoud Zouikri, 2011. "Small, alone and poor: a merciless portrait of insolvent French firms, 2007-2010," Working Papers hal-04140945, HAL.
    10. Nadine Levratto & Luc Tessier & Messaoud Zouikri, 2011. "Small, alone and poor: a merciless portrait of insolvent French firms, 2007-2010," EconomiX Working Papers 2011-36, University of Paris Nanterre, EconomiX.
    11. Philippe Jardin, 2021. "Forecasting bankruptcy using biclustering and neural network-based ensembles," Annals of Operations Research, Springer, vol. 299(1), pages 531-566, April.
    12. Chih‐Chun Chen & Chun‐Da Chen & Donald Lien, 2020. "Financial distress prediction model: The effects of corporate governance indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1238-1252, December.
    13. Cakir, Murat, 2005. "Firma Başarısızlığının Dinamiklerinin Belirlenmesinde Makina Öğrenmesi Teknikleri: Ampirik Uygulamalar ve Karşılaştırmalı Analiz [Machine Learning Techniques in Determining the Dynamics of Corporat," MPRA Paper 55975, University Library of Munich, Germany.
    14. Ben Jabeur, Sami, 2017. "Bankruptcy prediction using Partial Least Squares Logistic Regression," Journal of Retailing and Consumer Services, Elsevier, vol. 36(C), pages 197-202.
    15. Velia Gabriella Cenciarelli & Marco Maria Mattei & Giulio Greco, 2020. "Pressione competitiva e previsione dell?insolvenza," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2020(3), pages 35-58.
    16. Lars Schweizer & Andreas Nienhaus, 2017. "Corporate distress and turnaround: integrating the literature and directing future research," Business Research, Springer;German Academic Association for Business Research, vol. 10(1), pages 3-47, June.
    17. Bhanu Pratap Singh & Alok Kumar Mishra, 2016. "Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-28, December.
    18. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    19. Richardson, Grant & Taylor, Grantley & Lanis, Roman, 2015. "The impact of financial distress on corporate tax avoidance spanning the global financial crisis: Evidence from Australia," Economic Modelling, Elsevier, vol. 44(C), pages 44-53.
    20. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:isacfm:v:31:y:2024:i:4:n:e70000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1099-1174/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.