IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v10y2020i5p965-979.html
   My bibliography  Save this article

Effects of UV‐B radiation on soil carbon conversion and greenhouse gas emission in paddy soil

Author

Listed:
  • Tianguo Li
  • Xiang Li
  • Yong Liang
  • Mingrui Li
  • Ming Jiang
  • Fangdong Zhan
  • Yuan Li
  • Yongmei He

Abstract

This paper evaluates the relationship between ultraviolet‐B (UV‐B, 280–315 nm) radiation enhancement on the earth's surface caused by ozone attenuation and climate change. A pot experiment was conducted to investigate the effects of enhanced UV‐B radiation on greenhouse gas (GHG) emissions from the paddy soil with rice straw incorporation (SI). The paddy soil was sampled from the Yuanyang Terrace, Yunnan Province, Southwest China. There were four treatments: natural light (control check, CK), 5.0 kJ·m−2 UV‐B radiation (UVB), SI, and SI + UVB. The effects of UV‐B radiation (5.0 kJ·m−2) on straw degradation, soil carbon invertase activity, active organic carbon content, and GHG emissions were studied. The results showed that UV‐B radiation promoted the degradation of straw components (lignin, cellulose, hemicellulose, and water‐soluble phenol). The SI treatment significantly increased the activity of soil carbon invertase (P

Suggested Citation

  • Tianguo Li & Xiang Li & Yong Liang & Mingrui Li & Ming Jiang & Fangdong Zhan & Yuan Li & Yongmei He, 2020. "Effects of UV‐B radiation on soil carbon conversion and greenhouse gas emission in paddy soil," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 965-979, October.
  • Handle: RePEc:wly:greenh:v:10:y:2020:i:5:p:965-979
    DOI: 10.1002/ghg.2016
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.2016
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.2016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ying Liu & Haiying Tang & Aamer Muhammad & Guoqin Huang, 2019. "Emission mechanism and reduction countermeasures of agricultural greenhouse gases – a review," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(2), pages 160-174, April.
    2. Yifan Shi & Yunsheng Lou & Ying Wang & Huiting Zuo & Moses A. Ojara & Amina Lukali, 2020. "Estimation and mitigation of greenhouse gases in typical paddy‐upland rotation systems in the middle and lower reaches of the Yangtze River, China," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(1), pages 75-89, February.
    3. Tao Ding & Yadong Ning & Yan Zhang, 2017. "Estimation of greenhouse gas emissions in China 1990–2013," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(6), pages 1097-1115, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad, Irshad & Yan, Zhengang & Kamran, Muhammad & Ikram, Khushnuma & Ghani, Muhammad Usman & Hou, Fujiang, 2022. "Nitrogen management and supplemental irrigation affected greenhouse gas emissions, yield and nutritional quality of fodder maize in an arid region," Agricultural Water Management, Elsevier, vol. 269(C).
    2. Mehmood, Faisal & Wang, Guangshuai & Gao, Yang & Liang, Yueping & Chen, Jinsai & Si, Zhuanyun & Ramatshaba, Tefo Steve & Zain, Muhammad & Shafeeq-ur-rahman, & Duan, Aiwang, 2019. "Nitrous oxide emission from winter wheat field as responded to irrigation scheduling and irrigation methods in the North China Plain," Agricultural Water Management, Elsevier, vol. 222(C), pages 367-374.
    3. Mohd Hafiz Ali & Abdullah Adam & Mohd Hafizil Mat Yasin & Mohd Kamal Kamarulzaman & Mohd Fahmi Othman, 2020. "Mitigation of NOx emission by monophenolic antioxidants blended in POME biodiesel blends," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 829-839, August.
    4. Tingzhu Li & Debin Du & Xueli Wang & Xionghe Qin, 2022. "Can Nuclear Power Products Mitigate Greenhouse Gas Emissions? Evidence from Global Trade Network," IJERPH, MDPI, vol. 19(13), pages 1-25, June.
    5. Guofeng Wang & Pu Liu & Jinmiao Hu & Fan Zhang, 2022. "Spatiotemporal Patterns and Influencing Factors of Agriculture Methane Emissions in China," Agriculture, MDPI, vol. 12(10), pages 1-17, September.
    6. Mingxia Shi & Yibo Wang, 2023. "Do Green Transfer Payments Contribute to Carbon Emission Reduction?," Sustainability, MDPI, vol. 15(5), pages 1-18, February.
    7. Mehdi Ahmadi Jirdehi & Mohammad Shaterabadi, 2021. "A low‐carbon strategy using INVELOX turbines in the presence of real‐time energy price uncertainty," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 461-482, June.
    8. Shi, Yifan & Lou, Yunsheng & Zhang, Yiwei & Xu, Zufei, 2021. "Quantitative contributions of climate change, new cultivars adoption, and management practices to yield and global warming potential in rice-winter wheat rotation ecosystems," Agricultural Systems, Elsevier, vol. 190(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:10:y:2020:i:5:p:965-979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.