IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v11y2021i3p461-482.html
   My bibliography  Save this article

A low‐carbon strategy using INVELOX turbines in the presence of real‐time energy price uncertainty

Author

Listed:
  • Mehdi Ahmadi Jirdehi
  • Mohammad Shaterabadi

Abstract

This paper provides innovation in wind turbine (WT) technology and its advantages in microgrid planning. The microgrid in this work includes various renewable and nonrenewable resources. The proposed low‐carbon strategy is implemented via two scenarios. In the first scenario, the uncertainty of selling and buying real‐time energy prices is investigated with and without the standard and portable (increased velocity) INVELOX turbines. In the second scenario, the authors study the operation of the microgrid assuming the buying price is higher or lower than the selling price for all time intervals, as well as the first scenario assumption. This article considers the total cost of microgrids and environmental pollution as objective functions. Finally, the environmental‐economic stochastic low‐carbon strategy is modeled via mixed‐integer linear programming; solving the problem using epsilon constraints and a fuzzy satisfying approach to select the best solution, respectively. By considering INVELOX WTs and portable INVELOX WTs, the cost reduction of the microgrid in the first and second scenarios is approximately 25%, and 64% higher than the conventional WTs, respectively. Additionally, a low‐carbon model is proposed by considering INVELOX and its efficiency is successfully shown. © 2021 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Mehdi Ahmadi Jirdehi & Mohammad Shaterabadi, 2021. "A low‐carbon strategy using INVELOX turbines in the presence of real‐time energy price uncertainty," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 461-482, June.
  • Handle: RePEc:wly:greenh:v:11:y:2021:i:3:p:461-482
    DOI: 10.1002/ghg.2060
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.2060
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.2060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Allaei, Daryoush & Tarnowski, David & Andreopoulos, Yiannis, 2015. "INVELOX with multiple wind turbine generator systems," Energy, Elsevier, vol. 93(P1), pages 1030-1040.
    2. Tabar, Vahid Sohrabi & Abbasi, Vahid, 2019. "Energy management in microgrid with considering high penetration of renewable resources and surplus power generation problem," Energy, Elsevier, vol. 189(C).
    3. Basak, Prasenjit & Chowdhury, S. & Halder nee Dey, S. & Chowdhury, S.P., 2012. "A literature review on integration of distributed energy resources in the perspective of control, protection and stability of microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5545-5556.
    4. Tao Ding & Yadong Ning & Yan Zhang, 2017. "Estimation of greenhouse gas emissions in China 1990–2013," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(6), pages 1097-1115, December.
    5. Morais, Hugo & Kádár, Péter & Faria, Pedro & Vale, Zita A. & Khodr, H.M., 2010. "Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming," Renewable Energy, Elsevier, vol. 35(1), pages 151-156.
    6. Shaterabadi, Mohammad & Jirdehi, Mehdi Ahmadi & Amiri, Nima & Omidi, Sina, 2020. "Enhancement the economical and environmental aspects of plus-zero energy buildings integrated with INVELOX turbines," Renewable Energy, Elsevier, vol. 153(C), pages 1355-1367.
    7. Tabar, Vahid Sohrabi & Jirdehi, Mehdi Ahmadi & Hemmati, Reza, 2017. "Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option," Energy, Elsevier, vol. 118(C), pages 827-839.
    8. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    9. Aghajani, G.R. & Shayanfar, H.A. & Shayeghi, H., 2017. "Demand side management in a smart micro-grid in the presence of renewable generation and demand response," Energy, Elsevier, vol. 126(C), pages 622-637.
    10. Allaei, Daryoush & Andreopoulos, Yiannis, 2014. "INVELOX: Description of a new concept in wind power and its performance evaluation," Energy, Elsevier, vol. 69(C), pages 336-344.
    11. Sabah Ahmed Abdul‐Wahab & Yassine Charabi & Ghazi A. Al‐Rawas & Rashid Al‐Maamari & Adel Gastli & Keziah Chan, 2015. "Greenhouse gas (GHG) emissions in the Sultanate of Oman," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(3), pages 339-346, June.
    12. Patrao, Iván & Figueres, Emilio & Garcerá, Gabriel & González-Medina, Raúl, 2015. "Microgrid architectures for low voltage distributed generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 415-424.
    13. Shaterabadi, Mohammad & Jirdehi, Mehdi Ahmadi, 2020. "Multi-objective stochastic programming energy management for integrated INVELOX turbines in microgrids: A new type of turbines," Renewable Energy, Elsevier, vol. 145(C), pages 2754-2769.
    14. Ron Zevenhoven, 2015. "Understanding greenhouse gases: mission being accomplished," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(6), pages 695-696, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaterabadi, Mohammad & Jirdehi, Mehdi Ahmadi & Amiri, Nima & Omidi, Sina, 2020. "Enhancement the economical and environmental aspects of plus-zero energy buildings integrated with INVELOX turbines," Renewable Energy, Elsevier, vol. 153(C), pages 1355-1367.
    2. Siahpour, Shahin & Khakiani, Fardad N. & Fazlollahi, Vahid & Golozar, Ali & Shirazi, Farzad A., 2021. "Morphing Omni-directional Panel Mechanism: A novel active roof design for improving the performance of the wind delivery system," Energy, Elsevier, vol. 217(C).
    3. Tabar, Vahid Sohrabi & Jirdehi, Mehdi Ahmadi & Hemmati, Reza, 2017. "Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option," Energy, Elsevier, vol. 118(C), pages 827-839.
    4. Terfa, H. & Baghli, L. & Bhandari, R., 2022. "Impact of renewable energy micro-power plants on power grids over Africa," Energy, Elsevier, vol. 238(PA).
    5. Hosseini, S. Rasoul & Ganji, Davoud Domiri, 2020. "A novel design of nozzle-diffuser to enhance performance of INVELOX wind turbine," Energy, Elsevier, vol. 198(C).
    6. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    7. Soha, Tamás & Munkácsy, Béla & Harmat, Ádám & Csontos, Csaba & Horváth, Gergely & Tamás, László & Csüllög, Gábor & Daróczi, Henriett & Sáfián, Fanni & Szabó, Mária, 2017. "GIS-based assessment of the opportunities for small-scale pumped hydro energy storage in middle-mountain areas focusing on artificial landscape features," Energy, Elsevier, vol. 141(C), pages 1363-1373.
    8. Rodriguez, Mauricio & Arcos–Aviles, Diego & Martinez, Wilmar, 2023. "Fuzzy logic-based energy management for isolated microgrid using meta-heuristic optimization algorithms," Applied Energy, Elsevier, vol. 335(C).
    9. Arul Rajagopalan & Karthik Nagarajan & Oscar Danilo Montoya & Seshathiri Dhanasekaran & Inayathullah Abdul Kareem & Angalaeswari Sendraya Perumal & Natrayan Lakshmaiya & Prabhu Paramasivam, 2022. "Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer," Energies, MDPI, vol. 15(23), pages 1-24, November.
    10. Meratizaman, Mousa & Nateqi, Mojtaba, 2021. "Feasibility study of new generation of wind turbine (INVELOX), is it competitive with the Conventional Horizontal Axis Wind Turbine?," Energy, Elsevier, vol. 217(C).
    11. Anbarsooz, M. & Amiri, M. & Rashidi, I., 2019. "A novel curtain design to enhance the aerodynamic performance of Invelox: A steady-RANS numerical simulation," Energy, Elsevier, vol. 168(C), pages 207-221.
    12. Manur, Ashray & Venkataramanan, Giri & Sehloff, David, 2018. "Simple electric utility platform: A hardware/software solution for operating emergent microgrids," Applied Energy, Elsevier, vol. 210(C), pages 748-763.
    13. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part I: Review and classification of topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1251-1259.
    14. Prudhvi Kumar Gorijeevaram Reddy & Sattianadan Dasarathan & Vijayakumar Krishnasamy, 2021. "Investigation of Adaptive Droop Control Applied to Low-Voltage DC Microgrid," Energies, MDPI, vol. 14(17), pages 1-20, August.
    15. Hemmati, Reza & Saboori, Hedayat & Siano, Pierluigi, 2017. "Coordinated short-term scheduling and long-term expansion planning in microgrids incorporating renewable energy resources and energy storage systems," Energy, Elsevier, vol. 134(C), pages 699-708.
    16. Zhu, Junjie & Huang, Shengjun & Liu, Yajie & Lei, Hongtao & Sang, Bo, 2021. "Optimal energy management for grid-connected microgrids via expected-scenario-oriented robust optimization," Energy, Elsevier, vol. 216(C).
    17. Torkan, Ramin & Ilinca, Adrian & Ghorbanzadeh, Milad, 2022. "A genetic algorithm optimization approach for smart energy management of microgrids," Renewable Energy, Elsevier, vol. 197(C), pages 852-863.
    18. Gomes, I.L.R. & Melicio, R. & Mendes, V.M.F., 2021. "A novel microgrid support management system based on stochastic mixed-integer linear programming," Energy, Elsevier, vol. 223(C).
    19. Agüera-Pérez, Agustín & Palomares-Salas, José Carlos & González de la Rosa, Juan José & Florencias-Oliveros, Olivia, 2018. "Weather forecasts for microgrid energy management: Review, discussion and recommendations," Applied Energy, Elsevier, vol. 228(C), pages 265-278.
    20. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:11:y:2021:i:3:p:461-482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.