IDEAS home Printed from https://ideas.repec.org/a/wly/emetrp/v93y2025i2p719-729.html
   My bibliography  Save this article

A Comment on: “Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data”

Author

Listed:
  • Giuseppe Cavaliere
  • Thomas Mikosch
  • Anders Rahbek
  • Frederik Vilandt

Abstract

Based on the GARCH literature, Engle and Russell (1998) established consistency and asymptotic normality of the QMLE for the autoregressive conditional duration (ACD) model, assuming strict stationarity and ergodicity of the durations. Using novel arguments based on renewal process theory, we show that their results hold under the stronger requirement that durations have finite expectation. However, we demonstrate that this is not always the case under the assumption of stationary and ergodic durations. Specifically, we provide a counterexample where the MLE is asymptotically mixed normal and converges at a rate significantly slower than usual. The main difference between ACD and GARCH asymptotics is that the former must account for the number of durations in a given time span being random. As a by‐product, we present a new lemma which can be applied to analyze asymptotic properties of extremum estimators when the number of observations is random.

Suggested Citation

  • Giuseppe Cavaliere & Thomas Mikosch & Anders Rahbek & Frederik Vilandt, 2025. "A Comment on: “Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data”," Econometrica, Econometric Society, vol. 93(2), pages 719-729, March.
  • Handle: RePEc:wly:emetrp:v:93:y:2025:i:2:p:719-729
    DOI: 10.3982/ECTA21896
    as

    Download full text from publisher

    File URL: https://doi.org/10.3982/ECTA21896
    Download Restriction: no

    File URL: https://libkey.io/10.3982/ECTA21896?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jensen, Søren Tolver & Rahbek, Anders, 2004. "Asymptotic Inference For Nonstationary Garch," Econometric Theory, Cambridge University Press, vol. 20(6), pages 1203-1226, December.
    2. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    3. Jensen, Søren Tolver & Rahbek, Anders, 2007. "On The Law Of Large Numbers For (Geometrically) Ergodic Markov Chains," Econometric Theory, Cambridge University Press, vol. 23(4), pages 761-766, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Cavaliere & Thomas Mikosch & Anders Rahbek & Frederik Vilandt, 2023. "Asymptotics for the Generalized Autoregressive Conditional Duration Model," Papers 2307.01779, arXiv.org.
    2. Cavaliere, Giuseppe & Lu, Ye & Rahbek, Anders & Stærk-Østergaard, Jacob, 2023. "Bootstrap inference for Hawkes and general point processes," Journal of Econometrics, Elsevier, vol. 235(1), pages 133-165.
    3. Kristensen, Dennis & Rahbek, Anders, 2010. "Likelihood-based inference for cointegration with nonlinear error-correction," Journal of Econometrics, Elsevier, vol. 158(1), pages 78-94, September.
    4. Francisco Blasques & Paolo Gorgi & Siem Jan Koopman & Olivier Wintenberger, 2016. "Feasible Invertibility Conditions and Maximum Likelihood Estimation for Observation-Driven Models," Tinbergen Institute Discussion Papers 16-082/III, Tinbergen Institute.
    5. Fokianos, Konstantinos & Rahbek, Anders & Tjøstheim, Dag, 2009. "Poisson Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1430-1439.
    6. Andres, P. & Harvey, A., 2012. "The Dyanamic Location/Scale Model: with applications to intra-day financial data," Cambridge Working Papers in Economics 1240, Faculty of Economics, University of Cambridge.
    7. F Blasques & P Gorgi & S Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models," Papers 1610.02863, arXiv.org.
    8. Nielsen, Heino Bohn & Rahbek, Anders, 2014. "Unit root vector autoregression with volatility induced stationarity," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 144-167.
    9. F Blasques & P Gorgi & S J Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models ," Working Papers hal-01377971, HAL.
    10. Ryoko Ito, 2016. "Asymptotic Theory for Beta-t-GARCH," Cambridge Working Papers in Economics 1607, Faculty of Economics, University of Cambridge.
    11. Sun, Yuxin & Ibikunle, Gbenga, 2017. "Informed trading and the price impact of block trades: A high frequency trading analysis," International Review of Financial Analysis, Elsevier, vol. 54(C), pages 114-129.
    12. Pedersen, Rasmus Søndergaard, 2016. "Targeting Estimation Of Ccc-Garch Models With Infinite Fourth Moments," Econometric Theory, Cambridge University Press, vol. 32(2), pages 498-531, April.
    13. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    14. Alketa Bejko & Etleva Peta & Belinda Xarba, 2015. "The Evaluation of the Drafting Process of Regional’s Development Strategies in Albania. the Research on Gjirokastra’s Region," European Journal of Interdisciplinary Studies Articles, Revistia Research and Publishing, vol. 1, ejis_v1_i.
    15. Hallin, Marc & La Vecchia, Davide, 2020. "A Simple R-estimation method for semiparametric duration models," Journal of Econometrics, Elsevier, vol. 218(2), pages 736-749.
    16. Donelli, Nicola & Peluso, Stefano & Mira, Antonietta, 2021. "A Bayesian semiparametric vector Multiplicative Error Model," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    17. repec:kap:iaecre:v:14:y:2008:i:1:p:112-124 is not listed on IDEAS
    18. Bauwens, L. & Galli, F., 2009. "Efficient importance sampling for ML estimation of SCD models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1974-1992, April.
    19. Nowak, Sylwia & Anderson, Heather M., 2014. "How does public information affect the frequency of trading in airline stocks?," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 26-38.
    20. Saulo, Helton & Balakrishnan, Narayanaswamy & Vila, Roberto, 2023. "On a quantile autoregressive conditional duration model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 425-448.
    21. Pierre Perron & Eduardo Zorita & Wen Cao & Clifford Hurvich & Philippe Soulier, 2017. "Drift in Transaction-Level Asset Price Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 769-790, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emetrp:v:93:y:2025:i:2:p:719-729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.