IDEAS home Printed from https://ideas.repec.org/a/vrs/mtrbid/v45y2023i1p1-8n5.html
   My bibliography  Save this article

Opportunities for Digitisation of Agricultural and Rural Development Solutions

Author

Listed:
  • Atkočiūnienė Vilma

    (1 Prof., Dr., Vytautas Magnus University Agriculture Academy)

  • Papšienė Palmira

    (2 Junior researcher, Vytautas Magnus University Agriculture Academy)

Abstract

Agriculture identification of solution alternatives and their effective implementation require human resources capable of concentrating and systemically setting priorities and performing necessary tasks for realization of ideas. With the help of agricultural digitization, one employee can communicate with several robotic devices at once by sending them specific instructions, thereby synchronizing their work with each other. Such activities in agriculture help to save time and achieve higher productivity. Purpose of the study is to analyse opportunities for digitisation of agricultural and rural development solutions. The focus is on one of the options, the aim is to define how in a digital environment, using decision support systems (DSS), one employee can carry out several jobs and, according to feedback signal, perform their quality monitoring. Using digital technologies in agriculture and rural change management, employees can guarantee that every modern agricultural and rural development management system will start its work on time, perform it qualitatively and finish it on time. An employee can monitor the processes of change in agriculture and rural environment with the help of information technology. With the help of internet technologies and robots, implemented advanced information systems (such as DSS) can collect, analyse and process huge data (metrological, soil conditions, market information, etc.), so one person can perform several jobs at the same time. In order to successfully address the challenges of digitisation of agriculture and rural development, it is proposed to facilitate cooperation between a human (operator) and a robot when they exchange and (or) share tasks, control multifunctional processes, and, according to the obtained results, make changes to the components of the process in order to achieve the best result.

Suggested Citation

  • Atkočiūnienė Vilma & Papšienė Palmira, 2023. "Opportunities for Digitisation of Agricultural and Rural Development Solutions," Management Theory and Studies for Rural Business and Infrastructure Development, Sciendo, vol. 45(1), pages 1-8, March.
  • Handle: RePEc:vrs:mtrbid:v:45:y:2023:i:1:p:1-8:n:5
    DOI: 10.15544/mts.2023.01
    as

    Download full text from publisher

    File URL: https://doi.org/10.15544/mts.2023.01
    Download Restriction: no

    File URL: https://libkey.io/10.15544/mts.2023.01?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mohammad K. Al-nawayseh & Mohammad M. Alnabhan & Mutaz M. Al-Debei & Wamadeva Balachandran, 2013. "An Adaptive Decision Support System for Last Mile Logistics in E-Commerce: A Study on Online Grocery Shopping," International Journal of Decision Support System Technology (IJDSST), IGI Global, vol. 5(1), pages 40-65, January.
    2. Ara, Iffat & Turner, Lydia & Harrison, Matthew Tom & Monjardino, Marta & deVoil, Peter & Rodriguez, Daniel, 2021. "Application, adoption and opportunities for improving decision support systems in irrigated agriculture: A review," Agricultural Water Management, Elsevier, vol. 257(C).
    3. Robert Finger & Scott M. Swinton & Nadja El Benni & Achim Walter, 2019. "Precision Farming at the Nexus of Agricultural Production and the Environment," Annual Review of Resource Economics, Annual Reviews, vol. 11(1), pages 313-335, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schroer-Merker, Eva & Westbrooke, Victoria, 2020. "UK agricultural students’ perceptions of future technology use on-farm," Agri-Tech Economics Papers 308134, Harper Adams University, Land, Farm & Agribusiness Management Department.
    2. Vecchio, Yari & De Rosa, Marcello & Adinolfi, Felice & Bartoli, Luca & Masi, Margherita, 2020. "Adoption of precision farming tools: A context-related analysis," Land Use Policy, Elsevier, vol. 94(C).
    3. Shang, Linmei & Heckelei, Thomas & Gerullis, Maria K. & Börner, Jan & Rasch, Sebastian, 2021. "Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction," Agricultural Systems, Elsevier, vol. 190(C).
    4. Argento, F. & Liebisch, F. & Anken, T. & Walter, A. & El Benni, N., 2022. "Investigating two solutions to balance revenues and N surplus in Swiss winter wheat," Agricultural Systems, Elsevier, vol. 201(C).
    5. Metta, Matteo & Ciliberti, Stefano & Obi, Chinedu & Bartolini, Fabio & Klerkx, Laurens & Brunori, Gianluca, 2022. "An integrated socio-cyber-physical system framework to assess responsible digitalisation in agriculture: A first application with Living Labs in Europe," Agricultural Systems, Elsevier, vol. 203(C).
    6. Maurício Roberto Cherubin & Júnior Melo Damian & Tiago Rodrigues Tavares & Rodrigo Gonçalves Trevisan & André Freitas Colaço & Mateus Tonini Eitelwein & Maurício Martello & Ricardo Yassushi Inamasu & , 2022. "Precision Agriculture in Brazil: The Trajectory of 25 Years of Scientific Research," Agriculture, MDPI, vol. 12(11), pages 1-29, November.
    7. Monjardino, Marta & Harrison, Matthew T. & DeVoil, Peter & Rodriguez, Daniel & Sadras, Victor O., 2022. "Agronomic and on-farm infrastructure adaptations to manage economic risk in Australian irrigated broadacre systems: A case study," Agricultural Water Management, Elsevier, vol. 269(C).
    8. Guilherme Jesus & Martim L. Aguiar & Pedro D. Gaspar, 2022. "Computational Tool to Support the Decision in the Selection of Alternative and/or Sustainable Refrigerants," Energies, MDPI, vol. 15(22), pages 1-20, November.
    9. Michael Gbenga Ogungbuyi & Juan P. Guerschman & Andrew M. Fischer & Richard Azu Crabbe & Caroline Mohammed & Peter Scarth & Phil Tickle & Jason Whitehead & Matthew Tom Harrison, 2023. "Enabling Regenerative Agriculture Using Remote Sensing and Machine Learning," Land, MDPI, vol. 12(6), pages 1-25, May.
    10. Niklas Möhring & Martina Bozzola & Stefan Hirsch & Robert Finger, 2020. "Are pesticides risk decreasing? The relevance of pesticide indicator choice in empirical analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 51(3), pages 429-444, May.
    11. Meier, Laura & Brauns, Mario & Grimm, Volker & Weitere, Markus & Frank, Karin, 2022. "MASTIFF: A mechanistic model for cross-scale analyses of the functioning of multiple stressed riverine ecosystems," Ecological Modelling, Elsevier, vol. 470(C).
    12. Ingram, Julie & Maye, Damian & Bailye, Clive & Barnes, Andrew & Bear, Christopher & Bell, Matthew & Cutress, David & Davies, Lynfa & de Boon, Auvikki & Dinnie, Liz & Gairdner, Julian & Hafferty, Caitl, 2022. "What are the priority research questions for digital agriculture?," Land Use Policy, Elsevier, vol. 114(C).
    13. Gackstetter, David & von Bloh, Malte & Hannus, Veronika & Meyer, Sebastian T. & Weisser, Wolfgang & Luksch, Claudia & Asseng, Senthold, 2023. "Autonomous field management – An enabler of sustainable future in agriculture," Agricultural Systems, Elsevier, vol. 206(C).
    14. Yari Vecchio & Giulio Paolo Agnusdei & Pier Paolo Miglietta & Fabian Capitanio, 2020. "Adoption of Precision Farming Tools: The Case of Italian Farmers," IJERPH, MDPI, vol. 17(3), pages 1-16, January.
    15. Bartosz Bartkowski & Nils Droste & Mareike Lie{ss} & William Sidemo-Holm & Ulrich Weller & Mark V. Brady, 2019. "Implementing result-based agri-environmental payments by means of modelling," Papers 1908.08219, arXiv.org, revised Dec 2020.
    16. Oksana Hrynevych & Miguel Blanco Canto & Mercedes Jiménez García, 2022. "Tendencies of Precision Agriculture in Ukraine: Disruptive Smart Farming Tools as Cooperation Drivers," Agriculture, MDPI, vol. 12(5), pages 1-15, May.
    17. Leonie Hart & Elisabeth Quendler & Christina Umstaetter, 2022. "Sociotechnological Sustainability in Pasture Management: Labor Input and Optimization Potential of Smart Tools to Measure Herbage Mass and Quality," Sustainability, MDPI, vol. 14(12), pages 1-23, June.
    18. Shang, Linmei & Heckelei, Thomas & Börner, Jan & Rasch, Sebastian, 2020. "Adoption and Diffusion of Digital Farming Technologies – Integrating Farm-Level Evidence and System-Level Interaction," 60th Annual Conference, Halle/ Saale, Germany, September 23-25, 2020 305586, German Association of Agricultural Economists (GEWISOLA).
    19. Schroer-Merker, Eva & Westbrooke, Victoria, 2020. "UK agricultural students’ perceptions of future technology use on-farm," Land, Farm & Agribusiness Management Department 308134, Harper Adams University, Land, Farm & Agribusiness Management Department.
    20. Galaz, Victor & Centeno, Miguel A. & Callahan, Peter W. & Causevic, Amar & Patterson, Thayer & Brass, Irina & Baum, Seth & Farber, Darryl & Fischer, Joern & Garcia, David & McPhearson, Timon & Jimenez, 2021. "Artificial intelligence, systemic risks, and sustainability," Technology in Society, Elsevier, vol. 67(C).

    More about this item

    Keywords

    digitization; decision support systems; agricultural and rural development;
    All these keywords.

    JEL classification:

    • O15 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Economic Development: Human Resources; Human Development; Income Distribution; Migration
    • Q1 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:mtrbid:v:45:y:2023:i:1:p:1-8:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.