IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p3998-d781543.html
   My bibliography  Save this article

Conditioning of Feed Material Prior to Feeding: Approaches for a Sustainable Phosphorus Utilization

Author

Listed:
  • Niklas Widderich

    (Institute of Technical Biocatalysis, Hamburg University of Technology, 21073 Hamburg, Germany
    These authors contributed equally to this work.)

  • Natalie Mayer

    (Institute of Environmental Technology and Energy Economics, Hamburg University of Technology, 21073 Hamburg, Germany
    These authors contributed equally to this work.)

  • Anna Joelle Ruff

    (Institute of Biotechnology, RWTH Aachen University, 52056 Aachen, Germany)

  • Bernd Reckels

    (Institute of Animal Nutrition, University of Veterinary Medicine, Foundation, 30559 Hanover, Germany)

  • Florian Lohkamp

    (Institute of Animal Nutrition, University of Veterinary Medicine, Foundation, 30559 Hanover, Germany)

  • Christian Visscher

    (Institute of Animal Nutrition, University of Veterinary Medicine, Foundation, 30559 Hanover, Germany)

  • Ulrich Schwaneberg

    (Institute of Biotechnology, RWTH Aachen University, 52056 Aachen, Germany)

  • Martin Kaltschmitt

    (Institute of Environmental Technology and Energy Economics, Hamburg University of Technology, 21073 Hamburg, Germany)

  • Andreas Liese

    (Institute of Technical Biocatalysis, Hamburg University of Technology, 21073 Hamburg, Germany)

  • Paul Bubenheim

    (Institute of Technical Biocatalysis, Hamburg University of Technology, 21073 Hamburg, Germany)

Abstract

A circular phosphorus (P) bioeconomy is not only worthwhile for conserving limited mineral P reservoirs, but also for minimizing negative environmental impacts caused by human-made alterations. Although P is an essential nutrient, most of the P in concentrates based on cereals, legumes and oilseed byproducts is organically bound to phytate. The latter cannot be efficiently utilized by monogastric animals and is therefore diluted into the environment through the manure pathway. This review examines various strategies for improved P utilization in animals and reflects the respective limitations. The strategies considered include feeding of debranned feedstuffs, pre-germinated feed, co-feeding of phytase and feeding material with high native phytase activity. All these approaches contribute to an improved P bioavailability. However, about half of the organic P content continues to be excreted and therefore remains unused by the animals. Nevertheless, technologies for an efficient utilization of P from cereal-based feed already exist; however, these are not industrially established. Conditioning feed material prior to feeding fosters P-reduced feed; meanwhile, P bound to phytate can be recovered. Based on known techniques for P separation and solubilisation from cereal products and phytate conversion, potential designs for feed material conditioning processes are proposed and evaluated.

Suggested Citation

  • Niklas Widderich & Natalie Mayer & Anna Joelle Ruff & Bernd Reckels & Florian Lohkamp & Christian Visscher & Ulrich Schwaneberg & Martin Kaltschmitt & Andreas Liese & Paul Bubenheim, 2022. "Conditioning of Feed Material Prior to Feeding: Approaches for a Sustainable Phosphorus Utilization," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:3998-:d:781543
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/3998/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/3998/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richard E. White & Richard E. White & Richard E. White & Richard E. White & Richard E. White, 2012. "Fossil Fuel and Food Security," Chapters, in: Shahriar Khan (ed.), Fossil Fuel and the Environment, IntechOpen.
    2. Robert Finger & Scott M. Swinton & Nadja El Benni & Achim Walter, 2019. "Precision Farming at the Nexus of Agricultural Production and the Environment," Annual Review of Resource Economics, Annual Reviews, vol. 11(1), pages 313-335, October.
    3. Sina Shaddel & Hamidreza Bakhtiary-Davijany & Christian Kabbe & Farbod Dadgar & Stein W. Østerhus, 2019. "Sustainable Sewage Sludge Management: From Current Practices to Emerging Nutrient Recovery Technologies," Sustainability, MDPI, vol. 11(12), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Schroer-Merker, Eva & Westbrooke, Victoria, "undated". "UK agricultural students’ perceptions of future technology use on-farm," Agri-Tech Economics Papers 308134, Harper Adams University, Land, Farm & Agribusiness Management Department.
    3. Ponieman, Karen D. & Bongiovanni, Rodolfo & Battaglia, Martin L. & Hilbert, Jorge A. & Cipriotti, Pablo A. & Espósito, Gabriel, 2023. "Site-specific calculation of corn bioethanol carbon footprint with Life Cycle Assessment," Agri-Tech Economics Papers 344397, Harper Adams University, Land, Farm & Agribusiness Management Department.
    4. Ponieman, Karen D. & Bongiovanni, Rodolfo & Battaglia, Martin L. & Hilbert, Jorge A. & Cipriotti, Pablo A. & Espósito, Gabriel, 2023. "Site-specific calculation of corn bioethanol carbon footprint with Life Cycle Assessment," Land, Farm & Agribusiness Management Department 344397, Harper Adams University, Land, Farm & Agribusiness Management Department.
    5. Krzysztof Michalski & Magdalena Kóska-Wolny & Krzysztof Chmielowski & Michał Gąsiorek & Klaudiusz Grübel & Konrad Kalarus & Wiktor Halecki, 2025. "Heavy Metal Control and Dry Matter Assessment in Digested Sewage Sludge for Biogas Production," Energies, MDPI, vol. 18(10), pages 1-20, May.
    6. Shang, Linmei & Heckelei, Thomas & Gerullis, Maria K. & Börner, Jan & Rasch, Sebastian, 2021. "Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction," Agricultural Systems, Elsevier, vol. 190(C).
    7. Magdalena Szymańska & Tomasz Sosulski & Ewa Szara & Adam Wąs & Piotr Sulewski & Gijs W.P. van Pruissen & René L. Cornelissen, 2019. "Ammonium Sulphate from a Bio-Refinery System as a Fertilizer—Agronomic and Economic Effectiveness on the Farm Scale," Energies, MDPI, vol. 12(24), pages 1-15, December.
    8. Gonzalez-Martinez, Ana & Jongeneel, Roel & Salamon, Petra, 2021. "Lighting on the Road to Explore Future Directions for Agricultural Modelling in the EU – some Considerations on what Needs to be Done," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 12(03), September.
    9. Natalia Milojevic & Agnieszka Cydzik-Kwiatkowska, 2021. "Agricultural Use of Sewage Sludge as a Threat of Microplastic (MP) Spread in the Environment and the Role of Governance," Energies, MDPI, vol. 14(19), pages 1-16, October.
    10. Gackstetter, David & von Bloh, Malte & Hannus, Veronika & Meyer, Sebastian T. & Weisser, Wolfgang & Luksch, Claudia & Asseng, Senthold, 2023. "Autonomous field management – An enabler of sustainable future in agriculture," Agricultural Systems, Elsevier, vol. 206(C).
    11. Leonie Hart & Elisabeth Quendler & Christina Umstaetter, 2022. "Sociotechnological Sustainability in Pasture Management: Labor Input and Optimization Potential of Smart Tools to Measure Herbage Mass and Quality," Sustainability, MDPI, vol. 14(12), pages 1-23, June.
    12. Galaz, Victor & Centeno, Miguel A. & Callahan, Peter W. & Causevic, Amar & Patterson, Thayer & Brass, Irina & Baum, Seth & Farber, Darryl & Fischer, Joern & Garcia, David & McPhearson, Timon & Jimenez, 2021. "Artificial intelligence, systemic risks, and sustainability," Technology in Society, Elsevier, vol. 67(C).
    13. Roberta Mavugara & Mark Makomborero Matsa, 2024. "Resource Recovery from Municipal Wastewater Treatment Plants: the Zimbabwean Perspective," Circular Economy and Sustainability, Springer, vol. 4(1), pages 363-386, March.
    14. Monika Jakubus, 2023. "Quantitative Distribution and Contamination Risk Assessment of Cu and Zn in Municipal Sewage Sludge," Sustainability, MDPI, vol. 15(15), pages 1-18, August.
    15. Ning Wang & Yingying Xing & Xiukang Wang, 2019. "Exploring Options for Improving Potato Productivity through Reducing Crop Yield Gap in Loess Plateau of China Based on Grey Correlation Analysis," Sustainability, MDPI, vol. 11(20), pages 1-14, October.
    16. Friedrich Rübcke von Veltheim & Heinke Heise, 2020. "The AgTech Startup Perspective to Farmers Ex Ante Acceptance Process of Autonomous Field Robots," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    17. Wu, Zitao & Zhai, Haibo, 2021. "Consumptive life cycle water use of biomass-to-power plants with carbon capture and sequestration," Applied Energy, Elsevier, vol. 303(C).
    18. Beatrice Garske & Antonia Bau & Felix Ekardt, 2021. "Digitalization and AI in European Agriculture: A Strategy for Achieving Climate and Biodiversity Targets?," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    19. Gourav Sharma & Swati Shrestha & Sudip Kunwar & Te-Ming Tseng, 2021. "Crop Diversification for Improved Weed Management: A Review," Agriculture, MDPI, vol. 11(5), pages 1-17, May.
    20. Nawab Khan & Ram L. Ray & Hazem S. Kassem & Muhammad Ihtisham & Badar Naseem Siddiqui & Shemei Zhang, 2022. "Can Cooperative Supports and Adoption of Improved Technologies Help Increase Agricultural Income? Evidence from a Recent Study," Land, MDPI, vol. 11(3), pages 1-18, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:3998-:d:781543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.