IDEAS home Printed from https://ideas.repec.org/a/vrs/manmar/v10y2015i1p12-33n2.html
   My bibliography  Save this article

Energy efficiency model for small/medium geothermal heat pump systems

Author

Listed:
  • Staiger Robert
  • Tanţău Adrian

    (Bucharest University of Economic Studies, Bucharest, Romania)

Abstract

Heating application efficiency is a crucial point for saving energy and reducing greenhouse gas emissions. Today, EU legal framework conditions clearly define how heating systems should perform, how buildings should be designed in an energy efficient manner and how renewable energy sources should be used. Using heat pumps (HP) as an alternative “Renewable Energy System” could be one solution for increasing efficiency, using less energy, reducing the energy dependency and reducing greenhouse gas emissions. This scientific article will take a closer look at the different efficiency dependencies of such geothermal HP (GHP) systems for domestic buildings (small/medium HP). Manufacturers of HP appliances must document the efficiency, so called COP (Coefficient of Performance) in the EU under certain standards. In technical datasheets of HP appliances, these COP parameters give a clear indication of the performance quality of a HP device. HP efficiency (COP) and the efficiency of a working HP system can vary significantly. For this reason, an annual efficiency statistic named “Seasonal Performance Factor” (SPF) has been defined to get an overall efficiency for comparing HP Systems. With this indicator, conclusions can be made from an installation, economy, environmental, performance and a risk point of view. A technical and economic HP model shows the dependence of energy efficiency problems in HP systems. To reduce the complexity of the HP model, only the important factors for efficiency dependencies are used. Dynamic and static situations with HP´s and their efficiency are considered. With the latest data from field tests of HP Systems and the practical experience over the last 10 years, this information will be compared with one of the latest simulation programs with the help of two practical geothermal HP system calculations. With the result of the gathered empirical data, it allows for a better estimate of the HP system efficiency, their economic costs and benefits and their environmental impact.

Suggested Citation

  • Staiger Robert & Tanţău Adrian, 2015. "Energy efficiency model for small/medium geothermal heat pump systems," Management & Marketing, Sciendo, vol. 10(1), pages 12-33, June.
  • Handle: RePEc:vrs:manmar:v:10:y:2015:i:1:p:12-33:n:2
    DOI: 10.1515/cks-2015-0002
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/cks-2015-0002
    Download Restriction: no

    File URL: https://libkey.io/10.1515/cks-2015-0002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bayer, Peter & Saner, Dominik & Bolay, Stephan & Rybach, Ladislaus & Blum, Philipp, 2012. "Greenhouse gas emission savings of ground source heat pump systems in Europe: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1256-1267.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.
    2. Francesco Tinti & Sara Kasmaee & Mohamed Elkarmoty & Stefano Bonduà & Villiam Bortolotti, 2018. "Suitability Evaluation of Specific Shallow Geothermal Technologies Using a GIS-Based Multi Criteria Decision Analysis Implementing the Analytic Hierarchic Process," Energies, MDPI, vol. 11(2), pages 1-21, February.
    3. Li, Chao & Guan, Yanling & Liu, Jianhong & Jiang, Chao & Yang, Ruitao & Hou, Xueming, 2020. "Heat transfer performance of a deep ground heat exchanger for building heating in long-term service," Renewable Energy, Elsevier, vol. 166(C), pages 20-34.
    4. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2016. "A finite line source model with Cauchy-type top boundary conditions for simulating near surface effects on borehole heat exchangers," Energy, Elsevier, vol. 98(C), pages 50-63.
    5. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    6. Luo, Jin & Zhang, Qi & Liang, Changming & Wang, Haiqi & Ma, Xinning, 2023. "An overview of the recent development of the Ground Source Heat Pump (GSHP) system in China," Renewable Energy, Elsevier, vol. 210(C), pages 269-279.
    7. Wilke, Sascha & Menberg, Kathrin & Steger, Hagen & Blum, Philipp, 2020. "Advanced thermal response tests: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Trumpy, Eugenio & Bertani, Ruggero & Manzella, Adele & Sander, Marietta, 2015. "The web-oriented framework of the world geothermal production database: A business intelligence platform for wide data distribution and analysis," Renewable Energy, Elsevier, vol. 74(C), pages 379-389.
    9. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    10. Hähnlein, Stefanie & Bayer, Peter & Ferguson, Grant & Blum, Philipp, 2013. "Sustainability and policy for the thermal use of shallow geothermal energy," Energy Policy, Elsevier, vol. 59(C), pages 914-925.
    11. Patteeuw, Dieter & Reynders, Glenn & Bruninx, Kenneth & Protopapadaki, Christina & Delarue, Erik & D’haeseleer, William & Saelens, Dirk & Helsen, Lieve, 2015. "CO2-abatement cost of residential heat pumps with active demand response: demand- and supply-side effects," Applied Energy, Elsevier, vol. 156(C), pages 490-501.
    12. Zhu, Tong & Curtis, John & Clancy, Matthew, 2023. "Modelling barriers to low-carbon technologies in energy system analysis: The example of renewable heat in Ireland," Applied Energy, Elsevier, vol. 330(PA).
    13. García-Gil, Alejandro & Vázquez-Suñe, Enric & Alcaraz, Maria M. & Juan, Alejandro Serrano & Sánchez-Navarro, José Ángel & Montlleó, Marc & Rodríguez, Gustavo & Lao, José, 2015. "GIS-supported mapping of low-temperature geothermal potential taking groundwater flow into account," Renewable Energy, Elsevier, vol. 77(C), pages 268-278.
    14. Simon Rees & Robin Curtis, 2014. "National Deployment of Domestic Geothermal Heat Pump Technology: Observations on the UK Experience 1995–2013," Energies, MDPI, vol. 7(8), pages 1-40, August.
    15. Santamarta, Juan C. & García-Gil, Alejandro & Expósito, María del Cristo & Casañas, Elías & Cruz-Pérez, Noelia & Rodríguez-Martín, Jesica & Mejías-Moreno, Miguel & Götzl, Gregor & Gemeni, Vasiliki, 2021. "The clean energy transition of heating and cooling in touristic infrastructures using shallow geothermal energy in the Canary Islands," Renewable Energy, Elsevier, vol. 171(C), pages 505-515.
    16. Michele Bottarelli & Francisco Javier González Gallero, 2020. "Energy Analysis of a Dual-Source Heat Pump Coupled with Phase Change Materials," Energies, MDPI, vol. 13(11), pages 1-17, June.
    17. Retkowski, Waldemar & Thöming, Jorg, 2014. "Thermoeconomic optimization of vertical ground-source heat pump systems through nonlinear integer programming," Applied Energy, Elsevier, vol. 114(C), pages 492-503.
    18. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    19. Böttcher, Fabian & Casasso, Alessandro & Götzl, Gregor & Zosseder, Kai, 2019. "TAP - Thermal aquifer Potential: A quantitative method to assess the spatial potential for the thermal use of groundwater," Renewable Energy, Elsevier, vol. 142(C), pages 85-95.
    20. Cho, Sangmin & Kim, Jinsoo & Heo, Eunnyeong, 2015. "Application of fuzzy analytic hierarchy process to select the optimal heating facility for Korean horticulture and stockbreeding sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1075-1083.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:manmar:v:10:y:2015:i:1:p:12-33:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.