IDEAS home Printed from https://ideas.repec.org/a/the/publsh/5262.html
   My bibliography  Save this article

A theory of fair random allocation under priorities

Author

Listed:
  • Han, Xiang

    (School of Economics, Shanghai University of Finance and Economics)

Abstract

In the allocation of indivisible objects under weak priorities, a common practice is to break the ties using a lottery and randomize over deterministic mechanisms. Such randomizations usually lead to unfairness and inefficiency ex-ante. We propose and study the concept of ex-ante fairness for random allocations, extending some key results in the one-sided and two-sided matching markets. It is shown that the set of ex-ante fair random allocations forms a complete and distributive lattice under first-order stochastic dominance relations, and the agent-optimal ex-ante fair mechanism includes both the deferred acceptance algorithm and the probabilistic serial mechanism as special cases. Instead of randomizing over deterministic mechanisms, our mechanism is constructed using the division method, a new general way of constructing random mechanisms from deterministic mechanisms. As additional applications, we demonstrate that several previous extensions of the probabilistic serial mechanism have their foundations in existing deterministic mechanisms.

Suggested Citation

  • Han, Xiang, 2024. "A theory of fair random allocation under priorities," Theoretical Economics, Econometric Society, vol. 19(3), July.
  • Handle: RePEc:the:publsh:5262
    as

    Download full text from publisher

    File URL: http://econtheory.org/ojs/index.php/te/article/viewFile/20241185/39759/1225
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lars Ehlers & Bettina Klaus, 2003. "Coalitional strategy-proof and resource-monotonic solutions for multiple assignment problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 21(2), pages 265-280, October.
    2. Stergios Athanassoglou & Jay Sethuraman, 2011. "House allocation with fractional endowments," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(3), pages 481-513, August.
    3. Manjunath, Vikram & Westkamp, Alexander, 2021. "Strategy-proof exchange under trichotomous preferences," Journal of Economic Theory, Elsevier, vol. 193(C).
    4. Alkan, Ahmet & Gale, David, 2003. "Stable schedule matching under revealed preference," Journal of Economic Theory, Elsevier, vol. 112(2), pages 289-306, October.
    5. Kojima, Fuhito, 2009. "Random assignment of multiple indivisible objects," Mathematical Social Sciences, Elsevier, vol. 57(1), pages 134-142, January.
    6. Atila Abdulkadiroglu & Parag A. Pathak & Alvin E. Roth, 2009. "Strategy-proofness versus Efficiency in Matching with Indifferences: Redesigning the New York City High School Match," NBER Working Papers 14864, National Bureau of Economic Research, Inc.
    7. Heo, Eun Jeong, 2014. "Probabilistic assignment problem with multi-unit demands: A generalization of the serial rule and its characterization," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 40-47.
    8. Kojima, Fuhito & Manea, Mihai, 2010. "Incentives in the probabilistic serial mechanism," Journal of Economic Theory, Elsevier, vol. 145(1), pages 106-123, January.
    9. Yeon-Koo Che & Fuhito Kojima, 2010. "Asymptotic Equivalence of Probabilistic Serial and Random Priority Mechanisms," Econometrica, Econometric Society, vol. 78(5), pages 1625-1672, September.
    10. Biró, Péter & Klijn, Flip & Pápai, Szilvia, 2022. "Serial Rules in a Multi-Unit Shapley-Scarf Market," Games and Economic Behavior, Elsevier, vol. 136(C), pages 428-453.
    11. Katta, Akshay-Kumar & Sethuraman, Jay, 2006. "A solution to the random assignment problem on the full preference domain," Journal of Economic Theory, Elsevier, vol. 131(1), pages 231-250, November.
    12. Roth, Alvin E, 1984. "The Evolution of the Labor Market for Medical Interns and Residents: A Case Study in Game Theory," Journal of Political Economy, University of Chicago Press, vol. 92(6), pages 991-1016, December.
    13. Atila Abdulkadiroglu & Parag A. Pathak & Alvin E. Roth, 2009. "Strategy-Proofness versus Efficiency in Matching with Indifferences: Redesigning the NYC High School Match," American Economic Review, American Economic Association, vol. 99(5), pages 1954-1978, December.
    14. Aziz, Haris & Brandl, Florian, 2022. "The vigilant eating rule: A general approach for probabilistic economic design with constraints," Games and Economic Behavior, Elsevier, vol. 135(C), pages 168-187.
    15. Hylland, Aanund & Zeckhauser, Richard, 1979. "The Efficient Allocation of Individuals to Positions," Journal of Political Economy, University of Chicago Press, vol. 87(2), pages 293-314, April.
    16. Herve Moulin, 2004. "Fair Division and Collective Welfare," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262633116, April.
    17. Atila Abdulkadiroglu & Tayfun Sonmez, 1998. "Random Serial Dictatorship and the Core from Random Endowments in House Allocation Problems," Econometrica, Econometric Society, vol. 66(3), pages 689-702, May.
    18. Bogomolnaia, Anna & Moulin, Herve, 2001. "A New Solution to the Random Assignment Problem," Journal of Economic Theory, Elsevier, vol. 100(2), pages 295-328, October.
    19. YIlmaz, Özgür, 2009. "Random assignment under weak preferences," Games and Economic Behavior, Elsevier, vol. 66(1), pages 546-558, May.
    20. Heo, Eun Jeong & Yılmaz, Özgür, 2015. "A characterization of the extended serial correspondence," Journal of Mathematical Economics, Elsevier, vol. 59(C), pages 102-110.
    21. Alvin E. Roth & Uriel G. Rothblum & John H. Vande Vate, 1993. "Stable Matchings, Optimal Assignments, and Linear Programming," Mathematics of Operations Research, INFORMS, vol. 18(4), pages 803-828, November.
    22. Erdil, Aytek, 2014. "Strategy-proof stochastic assignment," Journal of Economic Theory, Elsevier, vol. 151(C), pages 146-162.
    23. Kesten, Onur, 2009. "Why do popular mechanisms lack efficiency in random environments?," Journal of Economic Theory, Elsevier, vol. 144(5), pages 2209-2226, September.
    24. Jingsheng Yu & Jun Zhang, 2020. "Efficient and fair trading algorithms in market design environments," Papers 2005.06878, arXiv.org, revised May 2021.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Afacan, Mustafa Oǧuz, 2018. "The object allocation problem with random priorities," Games and Economic Behavior, Elsevier, vol. 110(C), pages 71-89.
    2. Haris Aziz & Yoichi Kasajima, 2017. "Impossibilities for probabilistic assignment," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 49(2), pages 255-275, August.
    3. Hougaard, Jens Leth & Moreno-Ternero, Juan D. & Østerdal, Lars Peter, 2014. "Assigning agents to a line," Games and Economic Behavior, Elsevier, vol. 87(C), pages 539-553.
    4. Onur Kesten & Morimitsu Kurino & Alexander S. Nesterov, 2017. "Efficient lottery design," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(1), pages 31-57, January.
    5. Balbuzanov, Ivan, 2022. "Constrained random matching," Journal of Economic Theory, Elsevier, vol. 203(C).
    6. Kesten, Onur & Unver, Utku, 2015. "A theory of school choice lotteries," Theoretical Economics, Econometric Society, vol. 10(2), May.
    7. Shende, Priyanka & Purohit, Manish, 2023. "Strategy-proof and envy-free mechanisms for house allocation," Journal of Economic Theory, Elsevier, vol. 213(C).
    8. Andrew McLennan & Shino Takayama & Yuki Tamura, 2024. "An Efficient, Computationally Tractable School Choice Mechanism," Discussion Papers Series 668, School of Economics, University of Queensland, Australia.
    9. Alexander Nesterov, "undated". "Fairness and Efficiency in a Random Assignment: Three Impossibility Results," BDPEMS Working Papers 2014006, Berlin School of Economics.
    10. Fuhito Kojima & M. Ünver, 2014. "The “Boston” school-choice mechanism: an axiomatic approach," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 55(3), pages 515-544, April.
    11. Cho, Wonki Jo, 2016. "When is the probabilistic serial assignment uniquely efficient and envy-free?," Journal of Mathematical Economics, Elsevier, vol. 66(C), pages 14-25.
    12. Nesterov, Alexander S., 2017. "Fairness and efficiency in strategy-proof object allocation mechanisms," Journal of Economic Theory, Elsevier, vol. 170(C), pages 145-168.
    13. Wonki Jo Cho, 2018. "Probabilistic assignment: an extension approach," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 51(1), pages 137-162, June.
    14. Kojima, Fuhito, 2013. "Efficient resource allocation under multi-unit demand," Games and Economic Behavior, Elsevier, vol. 82(C), pages 1-14.
    15. Chang, Hee-In & Chun, Youngsub, 2017. "Probabilistic assignment of indivisible objects when agents have the same preferences except the ordinal ranking of one object," Mathematical Social Sciences, Elsevier, vol. 90(C), pages 80-92.
    16. Che, Yeon-Koo & Tercieux, Olivier, 2018. "Payoff equivalence of efficient mechanisms in large matching markets," Theoretical Economics, Econometric Society, vol. 13(1), January.
    17. Mennle, Timo & Seuken, Sven, 2021. "Partial strategyproofness: Relaxing strategyproofness for the random assignment problem," Journal of Economic Theory, Elsevier, vol. 191(C).
    18. Nguyen, Thành & Peivandi, Ahmad & Vohra, Rakesh, 2016. "Assignment problems with complementarities," Journal of Economic Theory, Elsevier, vol. 165(C), pages 209-241.
    19. Haris Aziz & Florian Brandl, 2020. "The Vigilant Eating Rule: A General Approach for Probabilistic Economic Design with Constraints," Papers 2008.08991, arXiv.org, revised Jul 2021.
    20. Anno, Hidekazu & Kurino, Morimitsu, 2016. "On the operation of multiple matching markets," Games and Economic Behavior, Elsevier, vol. 100(C), pages 166-185.

    More about this item

    Keywords

    Indivisible object; weak priority; random allocation; fairness; deferred acceptance algorithm; probabilistic serial mechanism;
    All these keywords.

    JEL classification:

    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory
    • D47 - Microeconomics - - Market Structure, Pricing, and Design - - - Market Design
    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations
    • D78 - Microeconomics - - Analysis of Collective Decision-Making - - - Positive Analysis of Policy Formulation and Implementation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:the:publsh:5262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Martin J. Osborne (email available below). General contact details of provider: http://econtheory.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.