IDEAS home Printed from https://ideas.repec.org/a/tec/journl/v6y2020i1p36-40.html
   My bibliography  Save this article

Methods in maritime education for analysis of factors influencing shipping and marine environment in the western part of the Black Sea

Author

Listed:
  • Valentina Poenaru

    (Constanta Maritime University, Constanta Romania)

  • Valerian Novac

    ("Dunarea de Jos" University ofGalati, Romania)

  • Razvan Bazaitu

    (Academia de Politie A. I. Cuza, Bucharest, Romania)

Abstract

The marine environment is a complex environment that includes both the water and the area of air moving through the vessel. Depending on its mode of expression, its status parameter value, it produces direct effects, favorable and unfavorable, on navigation. Modern Meteorology and Oceanography operating methods and procedures for obtaining data for education, necessary for determining regularities that lead to phenomena and processes which occur in interdependent layers, in the marine environment and the atmosphere above the ocean (waves, storms, rain, currents, the impact on the safety of life, activities and maritime navigation challenges -in terms of visibility, stability, and immovability of the ship.

Suggested Citation

  • Valentina Poenaru & Valerian Novac & Razvan Bazaitu, 2020. "Methods in maritime education for analysis of factors influencing shipping and marine environment in the western part of the Black Sea," Technium Social Sciences Journal, Technium Science, vol. 6(1), pages 36-40, April.
  • Handle: RePEc:tec:journl:v:6:y:2020:i:1:p:36-40
    as

    Download full text from publisher

    File URL: https://techniumscience.com/index.php/socialsciences/article/view/361/121
    Download Restriction: no

    File URL: https://techniumscience.com/index.php/socialsciences/article/view/361
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tănase Zanopol, Andrei & Onea, Florin & Rusu, Eugen, 2014. "Coastal impact assessment of a generic wave farm operating in the Romanian nearshore," Energy, Elsevier, vol. 72(C), pages 652-670.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Craig Jones & Grace Chang & Kaustubha Raghukumar & Samuel McWilliams & Ann Dallman & Jesse Roberts, 2018. "Spatial Environmental Assessment Tool (SEAT): A Modeling Tool to Evaluate Potential Environmental Risks Associated with Wave Energy Converter Deployments," Energies, MDPI, vol. 11(8), pages 1-19, August.
    2. Américo S. Ribeiro & Maite deCastro & Liliana Rusu & Mariana Bernardino & João M. Dias & Moncho Gomez-Gesteira, 2020. "Evaluating the Future Efficiency of Wave Energy Converters along the NW Coast of the Iberian Peninsula," Energies, MDPI, vol. 13(14), pages 1-15, July.
    3. Rusu, Liliana, 2019. "Evaluation of the near future wave energy resources in the Black Sea under two climate scenarios," Renewable Energy, Elsevier, vol. 142(C), pages 137-146.
    4. Liliana Rusu, 2015. "Assessment of the Wave Energy in the Black Sea Based on a 15-Year Hindcast with Data Assimilation," Energies, MDPI, vol. 8(9), pages 1-19, September.
    5. Rusu, Eugen & Onea, Florin, 2019. "A parallel evaluation of the wind and wave energy resources along the Latin American and European coastal environments," Renewable Energy, Elsevier, vol. 143(C), pages 1594-1607.
    6. Rusu, Eugen & Onea, Florin, 2016. "Estimation of the wave energy conversion efficiency in the Atlantic Ocean close to the European islands," Renewable Energy, Elsevier, vol. 85(C), pages 687-703.
    7. Carlo Lo Re & Giorgio Manno & Giuseppe Ciraolo & Giovanni Besio, 2019. "Wave Energy Assessment around the Aegadian Islands (Sicily)," Energies, MDPI, vol. 12(3), pages 1-20, January.
    8. repec:thr:techub:1006:y:2020:i:1:p:36-40 is not listed on IDEAS
    9. Daniel Ganea & Valentin Amortila & Elena Mereuta & Eugen Rusu, 2017. "A Joint Evaluation of the Wind and Wave Energy Resources Close to the Greek Islands," Sustainability, MDPI, vol. 9(6), pages 1-22, June.
    10. Rusu, Liliana & Onea, Florin, 2017. "The performance of some state-of-the-art wave energy converters in locations with the worldwide highest wave power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1348-1362.
    11. Onea, Florin & Rusu, Eugen, 2016. "The expected efficiency and coastal impact of a hybrid energy farm operating in the Portuguese nearshore," Energy, Elsevier, vol. 97(C), pages 411-423.
    12. Florin Onea & Liliana Rusu, 2017. "A Long-Term Assessment of the Black Sea Wave Climate," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    13. Rusu, Liliana & Onea, Florin, 2015. "Assessment of the performances of various wave energy converters along the European continental coasts," Energy, Elsevier, vol. 82(C), pages 889-904.
    14. Anton Catalin & Carmen Gasparotti & Alina Raileanu & Carmen Gasparotti & Rusu Eugen, 2017. "Towards an Integrated Management and Planning in the Romanian Black Sea Coastal Zones," Acta Universitatis Danubius. OEconomica, Danubius University of Galati, issue 13(5), pages 59-71, OCTOBER.
    15. Lo Re, Carlo & Manno, Giorgio & Basile, Mirko & Ciraolo, Giuseppe, 2022. "The opportunity of using wave energy converters in a Mediterranean hot spot," Renewable Energy, Elsevier, vol. 196(C), pages 1095-1114.
    16. Christopher Stokes & Daniel C. Conley, 2018. "Modelling Offshore Wave farms for Coastal Process Impact Assessment: Waves, Beach Morphology, and Water Users," Energies, MDPI, vol. 11(10), pages 1-26, September.
    17. Astariz, S. & Perez-Collazo, C. & Abanades, J. & Iglesias, G., 2015. "Co-located wave-wind farms: Economic assessment as a function of layout," Renewable Energy, Elsevier, vol. 83(C), pages 837-849.
    18. Foteinis, S. & Tsoutsos, T., 2017. "Strategies to improve sustainability and offset the initial high capital expenditure of wave energy converters (WECs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 775-785.

    More about this item

    Keywords

    maritime education; oceanographic and meteorological factors; environment; shipping;
    All these keywords.

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tec:journl:v:6:y:2020:i:1:p:36-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tasente Tanase (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.