IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v46y2015i7p1299-1306.html
   My bibliography  Save this article

The uncertainty recovery analysis for interdependent infrastructure systems using the dynamic inoperability input–output model

Author

Listed:
  • Wenping Xu
  • Zongjun Wang
  • Liu Hong
  • Ligang He
  • Xueguang Chen

Abstract

In this paper, an innovatory modelling framework is proposed to conduct the uncertainty recovery analysis for the interdependent infrastructure sectors based on the dynamic inoperability input–output model (DIIM). The DIIM captures the inoperability of infrastructure systems, and therefore can easily analyse how perturbations propagate among interconnected infrastructures and how to implement effective mitigation efforts after a disaster. In this paper, based on the random recovery time distribution, we apply the Monte Carlo simulation to obtain the distributions of the economic losses for the critical interdependent infrastructure sectors after a disaster. The proposed method can provide the decision-makers the guidance in making suitable risk-management decisions as well as how the risks can be mitigated, if the disaster cannot be avoided to happen in the first place.

Suggested Citation

  • Wenping Xu & Zongjun Wang & Liu Hong & Ligang He & Xueguang Chen, 2015. "The uncertainty recovery analysis for interdependent infrastructure systems using the dynamic inoperability input–output model," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(7), pages 1299-1306, May.
  • Handle: RePEc:taf:tsysxx:v:46:y:2015:i:7:p:1299-1306
    DOI: 10.1080/00207721.2013.822121
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2013.822121
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2013.822121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Setola, Roberto & De Porcellinis, Stefano & Sforna, Marino, 2009. "Critical infrastructure dependency assessment using the input–output inoperability model," International Journal of Critical Infrastructure Protection, Elsevier, vol. 2(4), pages 170-178.
    2. Jeesang Jung & Joost R. Santos & Yacov Y. Haimes, 2009. "International Trade Inoperability Input‐Output Model (IT‐IIM): Theory and Application," Risk Analysis, John Wiley & Sons, vol. 29(1), pages 137-154, January.
    3. Oliva, Gabriele & Panzieri, Stefano & Setola, Roberto, 2010. "Agent-based input–output interdependency model," International Journal of Critical Infrastructure Protection, Elsevier, vol. 3(2), pages 76-82.
    4. Pu Jiang & Yacov Y. Haimes, 2004. "Risk Management for Leontief‐Based Interdependent Systems," Risk Analysis, John Wiley & Sons, vol. 24(5), pages 1215-1229, October.
    5. Yu, W. & Harris, T.J., 2009. "Parameter uncertainty effects on variance-based sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 596-603.
    6. Yun Zhou & Lei Zhao & Xiaobo Zhao & Jianhua Jiang, 2011. "A supplier selection and order allocation problem with stochastic demands," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(8), pages 1323-1338.
    7. Kenneth G. Crowther & Yacov Y. Haimes & Gideon Taub, 2007. "Systemic Valuation of Strategic Preparedness Through Application of the Inoperability Input‐Output Model with Lessons Learned from Hurricane Katrina," Risk Analysis, John Wiley & Sons, vol. 27(5), pages 1345-1364, October.
    8. Garthwaite, Paul H. & Kadane, Joseph B. & O'Hagan, Anthony, 2005. "Statistical Methods for Eliciting Probability Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 680-701, June.
    9. Chenyang Lian & Joost R. Santos & Yacov Y. Haimes, 2007. "Extreme Risk Analysis of Interdependent Economic and Infrastructure Sectors," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 1053-1064, August.
    10. Kjell Hausken, 2011. "Protecting complex infrastructures against multiple strategic attackers," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(1), pages 11-29.
    11. Joost R. Santos & Mark J. Orsi & Erik J. Bond, 2009. "Pandemic Recovery Analysis Using the Dynamic Inoperability Input‐Output Model," Risk Analysis, John Wiley & Sons, vol. 29(12), pages 1743-1758, December.
    12. Joost R. Santos & Yacov Y. Haimes, 2004. "Modeling the Demand Reduction Input‐Output (I‐O) Inoperability Due to Terrorism of Interconnected Infrastructures," Risk Analysis, John Wiley & Sons, vol. 24(6), pages 1437-1451, December.
    13. Barker, Kash & Haimes, Yacov Y., 2009. "Assessing uncertainty in extreme events: Applications to risk-based decision making in interdependent infrastructure sectors," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 819-829.
    14. S.L. Nie & B. Hu & Y.P. Li & Z. Hu & G.H. Huang, 2011. "Identification of filter management strategy in fluid power systems under uncertainty: an interval-fuzzy parameter integer nonlinear programming method," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(3), pages 429-448.
    15. Marco Percoco, 2011. "On the Local Sensitivity Analysis of the Inoperability Input‐Output Model," Risk Analysis, John Wiley & Sons, vol. 31(7), pages 1038-1042, July.
    16. Marco Percoco, 2006. "A Note on the Inoperability Input‐Output Model," Risk Analysis, John Wiley & Sons, vol. 26(3), pages 589-594, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pradeep V. Mandapaka & Edmond Y. M. Lo, 2023. "Assessing Shock Propagation and Cascading Uncertainties Using the Input–Output Framework: Analysis of an Oil Refinery Accident in Singapore," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    2. Vodopivec, Neža & Miller-Hooks, Elise, 2019. "Transit system resilience: Quantifying the impacts of disruptions on diverse populations," Reliability Engineering and System Safety, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sellevåg, Stig Rune, 2021. "Changes in inoperability for interdependent industry sectors in Norway from 2012 to 2017," International Journal of Critical Infrastructure Protection, Elsevier, vol. 32(C).
    2. Wu, Baichao & Tang, Aiping & Wu, Jie, 2016. "Modeling cascading failures in interdependent infrastructures under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 1-8.
    3. Jian Jin & Haoran Zhou, 2023. "A Demand-Side Inoperability Input–Output Model for Strategic Risk Management: Insight from the COVID-19 Outbreak in Shanghai, China," Sustainability, MDPI, vol. 15(5), pages 1-22, February.
    4. Muhammad Abdullah Khalid & Yousaf Ali, 2020. "Economic impact assessment of natural disaster with multi-criteria decision making for interdependent infrastructures," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7287-7311, December.
    5. Krista Danielle S. Yu & Raymond R. Tan & Kathleen B. Aviso & Michael Angelo B. Promentilla & Joost R. Santos, 2014. "A Vulnerability Index For Post-Disaster Key Sector Prioritization," Economic Systems Research, Taylor & Francis Journals, vol. 26(1), pages 81-97, March.
    6. Pradeep V. Mandapaka & Edmond Y. M. Lo, 2023. "Assessing Shock Propagation and Cascading Uncertainties Using the Input–Output Framework: Analysis of an Oil Refinery Accident in Singapore," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    7. Jan Oosterhaven, 2017. "On the limited usability of the inoperability IO model," Economic Systems Research, Taylor & Francis Journals, vol. 29(3), pages 452-461, July.
    8. Cottafava, Dario & Gastaldo, Michele & Quatraro, Francesco & Santhiá, Cristina, 2022. "Modeling economic losses and greenhouse gas emissions reduction during the COVID-19 pandemic: Past, present, and future scenarios for Italy," Economic Modelling, Elsevier, vol. 110(C).
    9. Wu, Xianhua & Guo, Ji & Song, Shunfeng, 2023. "Influence of international trade disputes on the world industrial economic system based on inoperability input-output model," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 787-803.
    10. Argenti, Francesca & Landucci, Gabriele & Reniers, Genserik & Cozzani, Valerio, 2018. "Vulnerability assessment of chemical facilities to intentional attacks based on Bayesian Network," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 515-530.
    11. Joost R. Santos & Larissa May & Amine El Haimar, 2013. "Risk‐Based Input‐Output Analysis of Influenza Epidemic Consequences on Interdependent Workforce Sectors," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1620-1635, September.
    12. Abhinav B. Agrawal & Kash Barker & Yacov Y. Haimes, 2011. "Adaptive multiplayer approach for risk‐based decision‐making: 2006 Virginia Gubernatorial Inauguration," Systems Engineering, John Wiley & Sons, vol. 14(4), pages 455-470, December.
    13. Oosterhaven, Jan, 2015. "On the doubtful usability of the inoperability IO model," Research Report 15008-EEF, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    14. Sina Samimi & Sadoullah Ebrahimnejad & Mohammad Mojtahedi, 2020. "Analysis of the susceptibility of interdependent infrastructures using fuzzy input–output inoperability model: the case of flood hazards in Tehran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 69-88, January.
    15. Reilly, Allison C. & Baroud, Hiba & Flage, Roger & Gerst, Michael D., 2021. "Sources of uncertainty in interdependent infrastructure and their implications," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    16. Klein, Peter & Klein, Fabian, 2019. "Dynamics of interdependent critical infrastructures – A mathematical model with unexpected results," International Journal of Critical Infrastructure Protection, Elsevier, vol. 24(C), pages 69-77.
    17. Kenneth G. Crowther & Yacov Y. Haimes, 2010. "Development of the multiregional inoperability input‐output model (MRIIM) for spatial explicitness in preparedness of interdependent regions," Systems Engineering, John Wiley & Sons, vol. 13(1), pages 28-46, March.
    18. Oliva, Gabriele & Panzieri, Stefano & Setola, Roberto, 2011. "Fuzzy dynamic input–output inoperability model," International Journal of Critical Infrastructure Protection, Elsevier, vol. 4(3), pages 165-175.
    19. Amine El Haimar & Joost R. Santos, 2014. "Modeling Uncertainties in Workforce Disruptions from Influenza Pandemics Using Dynamic Input‐Output Analysis," Risk Analysis, John Wiley & Sons, vol. 34(3), pages 401-415, March.
    20. Niknejad, Ali & Petrovic, Dobrila, 2016. "A fuzzy dynamic Inoperability Input–output Model for strategic risk management in Global Production Networks," International Journal of Production Economics, Elsevier, vol. 179(C), pages 44-58.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:46:y:2015:i:7:p:1299-1306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.