IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v27y2007i5p1345-1364.html
   My bibliography  Save this article

Systemic Valuation of Strategic Preparedness Through Application of the Inoperability Input‐Output Model with Lessons Learned from Hurricane Katrina

Author

Listed:
  • Kenneth G. Crowther
  • Yacov Y. Haimes
  • Gideon Taub

Abstract

The U.S. Department of Homeland Security (DHS) has mandated all regions to “carefully weigh the benefit of each homeland security endeavor and only allocate resources where the benefit of reducing risk is worth the amount of additional cost” (DHS, 2006, p. 64). This mandate illuminates the need to develop methods for systemic valuation of preparedness measures that support strategic decision making. This article proposes an analysis method that naturally emerges from the structure of the inoperability input‐output model (IIM) through which various regional‐ and sector‐specific impact analyses can be cost‐effectively integrated for natural and man‐made disasters. The IIM is described extensively in a companion paper (Lian et al., 2007). Its reliance on data classifications structured by the U.S. Census Bureau and its extensive accounting of economic interdependencies enables us to decompose a risk analysis activity, perform independent assessments, and properly integrate the assessment for a systemic valuation of risk and risk management activity. In this article, we account for and assess some of the major impacts of Hurricanes Katrina and Rita to demonstrate this use of the IIM and illustrate hypothetical, reduced impacts resulting from various strategic preparedness decisions. Our results indicate the capability of the IIM to guide the decision‐making processes involved in developing a preparedness strategy.

Suggested Citation

  • Kenneth G. Crowther & Yacov Y. Haimes & Gideon Taub, 2007. "Systemic Valuation of Strategic Preparedness Through Application of the Inoperability Input‐Output Model with Lessons Learned from Hurricane Katrina," Risk Analysis, John Wiley & Sons, vol. 27(5), pages 1345-1364, October.
  • Handle: RePEc:wly:riskan:v:27:y:2007:i:5:p:1345-1364
    DOI: 10.1111/j.1539-6924.2007.00965.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2007.00965.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2007.00965.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yasuhide Okuyama & Geoffrey J. D. Hewings & Michael Sonis, 2004. "Measuring Economic Impacts of Disasters: Interregional Input-Output Analysis Using Sequential Interindustry Model," Advances in Spatial Science, in: Yasuhide Okuyama & Stephanie E. Chang (ed.), Modeling Spatial and Economic Impacts of Disasters, chapter 5, pages 77-101, Springer.
    2. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    3. Yacov Y. Haimes, 2006. "On the Definition of Vulnerabilities in Measuring Risks to Infrastructures," Risk Analysis, John Wiley & Sons, vol. 26(2), pages 293-296, April.
    4. Stan Kaplan & Yacov Y. Haimes & B. John Garrick, 2001. "Fitting Hierarchical Holographic Modeling into the Theory of Scenario Structuring and a Resulting Refinement to the Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 21(5), pages 807-807, October.
    5. Yacov Y. Haimes, 2005. "Managing Risks of Catastrophic and Extreme Events," Risk Analysis, John Wiley & Sons, vol. 25(4), pages 1083-1083, August.
    6. Yacov Y. Haimes, 1991. "Total Risk Management," Risk Analysis, John Wiley & Sons, vol. 11(2), pages 169-171, June.
    7. Chenyang Lian & Joost R. Santos & Yacov Y. Haimes, 2007. "Extreme Risk Analysis of Interdependent Economic and Infrastructure Sectors," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 1053-1064, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sellevåg, Stig Rune, 2021. "Changes in inoperability for interdependent industry sectors in Norway from 2012 to 2017," International Journal of Critical Infrastructure Protection, Elsevier, vol. 32(C).
    2. Wenping Xu & Zongjun Wang & Liu Hong & Ligang He & Xueguang Chen, 2015. "The uncertainty recovery analysis for interdependent infrastructure systems using the dynamic inoperability input–output model," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(7), pages 1299-1306, May.
    3. Pradeep V. Mandapaka & Edmond Y. M. Lo, 2023. "Assessing Shock Propagation and Cascading Uncertainties Using the Input–Output Framework: Analysis of an Oil Refinery Accident in Singapore," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    4. Kenneth G. Crowther & Yacov Y. Haimes, 2010. "Development of the multiregional inoperability input‐output model (MRIIM) for spatial explicitness in preparedness of interdependent regions," Systems Engineering, John Wiley & Sons, vol. 13(1), pages 28-46, March.
    5. Yaseen, Qazi Muhammad & Akhtar, Rehman & Khalil, Muhammad Kaleem Ullah & Usman Jan, Qazi Muhammad, 2020. "Dynamic inoperability input-output modeling for economic losses estimation in industries during flooding," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    6. Maria Iglesias-Mendoza & Akilu Yunusa-Kaltungo & Sara Hadleigh-Dunn & Ashraf Labib, 2021. "Learning How to Learn from Disasters through a Comparative Dichotomy Analysis: Grenfell Tower and Hurricane Katrina Case Studies," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    7. Oliva, Gabriele & Panzieri, Stefano & Setola, Roberto, 2011. "Fuzzy dynamic input–output inoperability model," International Journal of Critical Infrastructure Protection, Elsevier, vol. 4(3), pages 165-175.
    8. Chiradip Chatterjee & Pallab Mozumder, 2014. "Understanding Household Preferences for Hurricane Risk Mitigation Information: Evidence from Survey Responses," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 984-996, June.
    9. Krista Danielle S. Yu & Raymond R. Tan & Kathleen B. Aviso & Michael Angelo B. Promentilla & Joost R. Santos, 2014. "A Vulnerability Index For Post-Disaster Key Sector Prioritization," Economic Systems Research, Taylor & Francis Journals, vol. 26(1), pages 81-97, March.
    10. Muhammad Abdullah Khalid & Yousaf Ali, 2020. "Economic impact assessment of natural disaster with multi-criteria decision making for interdependent infrastructures," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7287-7311, December.
    11. Cottafava, Dario & Gastaldo, Michele & Quatraro, Francesco & Santhiá, Cristina, 2022. "Modeling economic losses and greenhouse gas emissions reduction during the COVID-19 pandemic: Past, present, and future scenarios for Italy," Economic Modelling, Elsevier, vol. 110(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenneth G. Crowther & Yacov Y. Haimes, 2005. "Application of the inoperability input—output model (IIM) for systemic risk assessment and management of interdependent infrastructures," Systems Engineering, John Wiley & Sons, vol. 8(4), pages 323-341.
    2. Yacov Y. Haimes & Kenneth Crowther & Barry M. Horowitz, 2008. "Homeland security preparedness: Balancing protection with resilience in emergent systems," Systems Engineering, John Wiley & Sons, vol. 11(4), pages 287-308, December.
    3. Yacov Y. Haimes, 2011. "On the Complex Quantification of Risk: Systems‐Based Perspective on Terrorism," Risk Analysis, John Wiley & Sons, vol. 31(8), pages 1175-1186, August.
    4. Yacov Y. Haimes, 2009. "On the Complex Definition of Risk: A Systems‐Based Approach," Risk Analysis, John Wiley & Sons, vol. 29(12), pages 1647-1654, December.
    5. Yacov Y. Haimes, 2012. "Systems‐Based Guiding Principles for Risk Modeling, Planning, Assessment, Management, and Communication," Risk Analysis, John Wiley & Sons, vol. 32(9), pages 1451-1467, September.
    6. Jalal Ali & Joost R. Santos, 2015. "Modeling the Ripple Effects of IT‐Based Incidents on Interdependent Economic Systems," Systems Engineering, John Wiley & Sons, vol. 18(2), pages 146-161, March.
    7. Maria Leung & James H. Lambert & Alexander Mosenthal, 2004. "A Risk‐Based Approach to Setting Priorities in Protecting Bridges Against Terrorist Attacks," Risk Analysis, John Wiley & Sons, vol. 24(4), pages 963-984, August.
    8. Yacov Y Haimes, 2012. "Strategic Preparedness for Recovery from Catastrophic Risks to Communities and Infrastructure Systems of Systems," Risk Analysis, John Wiley & Sons, vol. 32(11), pages 1834-1845, November.
    9. Michael J. Pennock & Yacov Y. Haimes, 2002. "Principles and guidelines for project risk management," Systems Engineering, John Wiley & Sons, vol. 5(2), pages 89-108.
    10. Yacov Y. Haimes & Clyde C. Chittister, 2012. "Risk to cyberinfrastructure systems served by cloud computing technology as systems of systems," Systems Engineering, John Wiley & Sons, vol. 15(2), pages 213-224, June.
    11. Joost R. Santos & Lucia Castro Herrera & Krista Danielle S. Yu & Sheree Ann T. Pagsuyoin & Raymond R. Tan, 2014. "State of the Art in Risk Analysis of Workforce Criticality Influencing Disaster Preparedness for Interdependent Systems," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1056-1068, June.
    12. Joanna Resurreccion & Joost R. Santos, 2012. "Multiobjective Prioritization Methodology and Decision Support System for Evaluating Inventory Enhancement Strategies for Disrupted Interdependent Sectors," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1673-1692, October.
    13. Massimo Andretta, 2014. "Some Considerations on the Definition of Risk Based on Concepts of Systems Theory and Probability," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1184-1195, July.
    14. Yacov Y. Haimes & Stan Kaplan & James H. Lambert, 2002. "Risk Filtering, Ranking, and Management Framework Using Hierarchical Holographic Modeling," Risk Analysis, John Wiley & Sons, vol. 22(2), pages 383-397, April.
    15. James H. Lambert & Rachel K. Jennings & Nilesh N. Joshi, 2006. "Integration of risk identification with business process models," Systems Engineering, John Wiley & Sons, vol. 9(3), pages 187-198, September.
    16. Matthew H. Henry & Yacov Y. Haimes, 2009. "A Comprehensive Network Security Risk Model for Process Control Networks," Risk Analysis, John Wiley & Sons, vol. 29(2), pages 223-248, February.
    17. Amro Nasr & Oskar Larsson Ivanov & Ivar Björnsson & Jonas Johansson & Dániel Honfi, 2021. "Towards a Conceptual Framework for Built Infrastructure Design in an Uncertain Climate: Challenges and Research Needs," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    18. James H. Lambert & Benjamin L. Schulte & Priya Sarda, 2005. "Tracking the complexity of interactions between risk incidents and engineering systems," Systems Engineering, John Wiley & Sons, vol. 8(3), pages 262-277, September.
    19. Stephanie E. Chang & Timothy McDaniels & Jana Fox & Rajan Dhariwal & Holly Longstaff, 2014. "Toward Disaster‐Resilient Cities: Characterizing Resilience of Infrastructure Systems with Expert Judgments," Risk Analysis, John Wiley & Sons, vol. 34(3), pages 416-434, March.
    20. Yacov Y. Haimes, 2006. "On the Definition of Vulnerabilities in Measuring Risks to Infrastructures," Risk Analysis, John Wiley & Sons, vol. 26(2), pages 293-296, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:27:y:2007:i:5:p:1345-1364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.