IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v16y2016i9p1393-1411.html
   My bibliography  Save this article

Gradient-based simulated maximum likelihood estimation for stochastic volatility models using characteristic functions

Author

Listed:
  • Yijie Peng
  • Michael C. Fu
  • Jian-Qiang Hu

Abstract

Parameter estimation and statistical inference are challenging problems for stochastic volatility (SV) models, especially those driven by pure jump Lévy processes. Maximum likelihood estimation (MLE) is usually preferred when a parametric statistical model is correctly specified, but traditional MLE implementation for SV models is computationally infeasible due to high dimensionality of the integral involved. To overcome this difficulty, we propose a gradient-based simulated MLE method under the hidden Markov structure for SV models, which covers those driven by pure jump Lévy processes. Gradient estimation using characteristic functions and sequential Monte Carlo in the simulation of the hidden states are implemented. Numerical experiments illustrate the efficiency of the proposed method.

Suggested Citation

  • Yijie Peng & Michael C. Fu & Jian-Qiang Hu, 2016. "Gradient-based simulated maximum likelihood estimation for stochastic volatility models using characteristic functions," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1393-1411, September.
  • Handle: RePEc:taf:quantf:v:16:y:2016:i:9:p:1393-1411
    DOI: 10.1080/14697688.2016.1185142
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2016.1185142
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2016.1185142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    2. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    3. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    4. Raknerud, Arvid & Skare, Øivind, 2012. "Indirect inference methods for stochastic volatility models based on non-Gaussian Ornstein–Uhlenbeck processes," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3260-3275.
    5. Yi-Jie Peng & Michael C. Fu & Jian-Qiang Hu, 2013. "Gradient-based simulated maximum likelihood estimation for L�vy-driven Ornstein-Uhlenbeck stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 14(8), pages 1399-1414, August.
    6. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    7. Li, Yong & Yu, Jun, 2012. "Bayesian hypothesis testing in latent variable models," Journal of Econometrics, Elsevier, vol. 166(2), pages 237-246.
    8. Smith, A A, Jr, 1993. "Estimating Nonlinear Time-Series Models Using Simulated Vector Autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 63-84, Suppl. De.
    9. Gareth O. Roberts & Omiros Papaspiliopoulos & Petros Dellaportas, 2004. "Bayesian inference for non‐Gaussian Ornstein–Uhlenbeck stochastic volatility processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 369-393, May.
    10. Andersen, Torben G. & Chung, Hyung-Jin & Sorensen, Bent E., 1999. "Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 91(1), pages 61-87, July.
    11. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
    12. Ajay Jasra & David A. Stephens & Arnaud Doucet & Theodoros Tsagaris, 2011. "Inference for Lévy‐Driven Stochastic Volatility Models via Adaptive Sequential Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(1), pages 1-22, March.
    13. Paul Glasserman & Zongjian Liu, 2010. "Sensitivity Estimates from Characteristic Functions," Operations Research, INFORMS, vol. 58(6), pages 1611-1623, December.
    14. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    15. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 335-338, July.
    16. Ruiz, Esther, 1994. "Quasi-maximum likelihood estimation of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 63(1), pages 289-306, July.
    17. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    18. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    19. Yongqiang Wang & Michael C. Fu & Steven I. Marcus, 2012. "A New Stochastic Derivative Estimator for Discontinuous Payoff Functions with Application to Financial Derivatives," Operations Research, INFORMS, vol. 60(2), pages 447-460, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan-Feng Wu & Xiangyu Yang & Jian-Qiang Hu, 2024. "Method of Moments Estimation for Affine Stochastic Volatility Models," Papers 2408.09185, arXiv.org.
    2. Yijie Peng & Michael C. Fu & Bernd Heidergott & Henry Lam, 2020. "Maximum Likelihood Estimation by Monte Carlo Simulation: Toward Data-Driven Stochastic Modeling," Operations Research, INFORMS, vol. 68(6), pages 1896-1912, November.
    3. Li, Chenxu & Wu, Linjia, 2019. "Exact simulation of the Ornstein–Uhlenbeck driven stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 275(2), pages 768-779.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    2. Yan-Feng Wu & Xiangyu Yang & Jian-Qiang Hu, 2024. "Method of Moments Estimation for Affine Stochastic Volatility Models," Papers 2408.09185, arXiv.org.
    3. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2024. "Maximum likelihood estimation of latent Markov models using closed-form approximations," Journal of Econometrics, Elsevier, vol. 240(2).
    4. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    5. MEDDAHI, Nour, 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Universite de Montreal, Departement de sciences economiques.
    6. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    7. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    8. Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.
    9. Barndorff-Nielsen, Ole E. & Shephard, Neil, 2006. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 217-252.
    10. Griffin, J.E. & Steel, M.F.J., 2006. "Inference with non-Gaussian Ornstein-Uhlenbeck processes for stochastic volatility," Journal of Econometrics, Elsevier, vol. 134(2), pages 605-644, October.
    11. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    12. Davide Raggi & Silvano Bordignon, 2011. "Volatility, Jumps, and Predictability of Returns: A Sequential Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 30(6), pages 669-695.
    13. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    14. Pezzo, Rosanna & Uberti, Mariacristina, 2006. "Approaches to forecasting volatility: Models and their performances for emerging equity markets," Chaos, Solitons & Fractals, Elsevier, vol. 29(3), pages 556-565.
    15. Liu, Qingfu & Tu, Anthony H., 2012. "Jump spillovers in energy futures markets: Implications for diversification benefits," Energy Economics, Elsevier, vol. 34(5), pages 1447-1464.
    16. Peter C. B. Phillips & Jun Yu, 2009. "Simulation-Based Estimation of Contingent-Claims Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3669-3705, September.
    17. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    18. Yun, Jaeho, 2011. "The role of time-varying jump risk premia in pricing stock index options," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 833-846.
    19. Cheng, Ai-ru (Meg) & Gallant, A. Ronald & Ji, Chuanshu & Lee, Beom S., 2008. "A Gaussian approximation scheme for computation of option prices in stochastic volatility models," Journal of Econometrics, Elsevier, vol. 146(1), pages 44-58, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:16:y:2016:i:9:p:1393-1411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.