IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v10y2010i8p931-945.html
   My bibliography  Save this article

Portfolio selection based on the mean-VaR efficient frontier

Author

Listed:
  • Chueh-Yung Tsao

Abstract

Value-at-Risk (VaR) has become one of the standard measures for assessing risk not only in the financial industry but also for asset allocations of individual investors. The traditional mean-variance framework for portfolio selection should, however, be revised when the investor's concern is the VaR instead of the standard deviation. This is especially true when asset returns are not normal. In this paper, we incorporate VaR in portfolio selection, and we propose a mean-VaR efficient frontier. Due to the two-objective optimization problem that is associated with the mean-VaR framework, an evolutionary multi-objective approach is required to construct the mean-VaR efficient frontier. Specifically, we consider the elitist non-dominated sorting Genetic Algorithm (NSGA-II). From our empirical analysis, we conclude that the risk-averse investor might inefficiently allocate his/her wealth if his/her decision is based on the mean-variance framework.

Suggested Citation

  • Chueh-Yung Tsao, 2010. "Portfolio selection based on the mean-VaR efficient frontier," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 931-945.
  • Handle: RePEc:taf:quantf:v:10:y:2010:i:8:p:931-945
    DOI: 10.1080/14697681003652514
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697681003652514
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andersen, Torben G., 1998. "The Econometrics Of Financial Markets," Econometric Theory, Cambridge University Press, vol. 14(05), pages 671-685, October.
    2. Neely, Christopher & Weller, Paul & Dittmar, Rob, 1997. "Is Technical Analysis in the Foreign Exchange Market Profitable? A Genetic Programming Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(04), pages 405-426, December.
    3. Campbell, John Y. & Lo, Andrew W. & MacKinlay, A. Craig & Whitelaw, Robert F., 1998. "The Econometrics Of Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 2(04), pages 559-562, December.
    4. Neely, Christopher J. & Weller, Paul A., 1999. "Technical trading rules in the European Monetary System," Journal of International Money and Finance, Elsevier, vol. 18(3), pages 429-458.
    5. Arjan Berkelaar & Phornchanok Cumperayot & Roy Kouwenberg, 2002. "The Effect of VaR Based Risk Management on Asset Prices and the Volatility Smile," European Financial Management, European Financial Management Association, vol. 8(2), pages 139-164.
    6. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    7. M. A. H. dempster & C. M. Jones, 2001. "A real-time adaptive trading system using genetic programming," Quantitative Finance, Taylor & Francis Journals, vol. 1(4), pages 397-413.
    8. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    9. Allen, Franklin & Karjalainen, Risto, 1999. "Using genetic algorithms to find technical trading rules," Journal of Financial Economics, Elsevier, vol. 51(2), pages 245-271, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Víctor M. Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, "undated". "Portfolios in the Ibex 35 index: Alternative methods to the traditional framework, a comparative with the naive diversification in a pre- and post- crisis context," Documentos de Trabajo del ICAE 2015-07, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Jun 2015.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:10:y:2010:i:8:p:931-945. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.