IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v33y2015i2p296-306.html
   My bibliography  Save this article

Inference for Local Autocorrelations in Locally Stationary Models

Author

Listed:
  • Zhibiao Zhao

Abstract

For nonstationary processes, the time-varying correlation structure provides useful insights into the underlying model dynamics. We study estimation and inferences for local autocorrelation process in locally stationary time series. Our constructed simultaneous confidence band can be used to address important hypothesis testing problems, such as whether the local autocorrelation process is indeed time-varying and whether the local autocorrelation is zero. In particular, our result provides an important generalization of the R function acf() to locally stationary Gaussian processes. Simulation studies and two empirical applications are developed. For the global temperature series, we find that the local autocorrelations are time-varying and have a "V" shape during 1910-1960. For the S&P 500 index, we conclude that the returns satisfy the efficient-market hypothesis whereas the magnitudes of returns show significant local autocorrelations.

Suggested Citation

  • Zhibiao Zhao, 2015. "Inference for Local Autocorrelations in Locally Stationary Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 296-306, April.
  • Handle: RePEc:taf:jnlbes:v:33:y:2015:i:2:p:296-306
    DOI: 10.1080/07350015.2014.948177
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2014.948177
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2014.948177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. P. Nason & R. Von Sachs & G. Kroisandt, 2000. "Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 271-292.
    2. Davis, Richard A. & Lee, Thomas C.M. & Rodriguez-Yam, Gabriel A., 2006. "Structural Break Estimation for Nonstationary Time Series Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 223-239, March.
    3. Jianqing Fan & Wenyang Zhang, 2000. "Simultaneous Confidence Bands and Hypothesis Testing in Varying‐coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 715-731, December.
    4. Ombao H. C & Raz J. A & von Sachs R. & Malow B. A, 2001. "Automatic Statistical Analysis of Bivariate Nonstationary Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 543-560, June.
    5. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    6. Ombao, Hernando & von Sachs, Rainer & Guo, Wensheng, 2005. "SLEX Analysis of Multivariate Nonstationary Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 519-531, June.
    7. Wei Biao Wu & Zhibiao Zhao, 2007. "Inference of trends in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 391-410, June.
    8. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
    3. Sanderson, Jean & Fryzlewicz, Piotr & Jones, M. W., 2010. "Estimating linear dependence between nonstationary time series using the locally stationary wavelet model," LSE Research Online Documents on Economics 29141, London School of Economics and Political Science, LSE Library.
    4. Cho, Haeran & Fryzlewicz, Piotr, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," LSE Research Online Documents on Economics 57147, London School of Economics and Political Science, LSE Library.
    5. Marios Sergides & Efstathios Paparoditis, 2009. "Frequency Domain Tests of Semiparametric Hypotheses for Locally Stationary Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 800-821, December.
    6. Zhang, Shibin, 2016. "Adaptive spectral estimation for nonstationary multivariate time series," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 330-349.
    7. Lujia Bai & Weichi Wu, 2021. "Detecting long-range dependence for time-varying linear models," Papers 2110.08089, arXiv.org, revised Mar 2023.
    8. Tan, Zhengxun & Liu, Juan & Chen, Juanjuan, 2021. "Detecting stock market turning points using wavelet leaders method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    9. Fryzlewicz, Piotr & Nason, Guy P., 2006. "Haar-Fisz estimation of evolutionary wavelet spectra," LSE Research Online Documents on Economics 25227, London School of Economics and Political Science, LSE Library.
    10. Mahata, Ajit & Rai, Anish & Nurujjaman, Md. & Prakash, Om, 2021. "Modeling and analysis of the effect of COVID-19 on the stock price: V and L-shape recovery," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    11. Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun, 2017. "Long Memory and Data Frequency in Financial Markets," CESifo Working Paper Series 6396, CESifo.
    12. Kim, Kun Ho & Chao, Shih-Kang & Härdle, Wolfgang Karl, 2020. "Simultaneous Inference of the Partially Linear Model with a Multivariate Unknown Function," IRTG 1792 Discussion Papers 2020-008, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    13. Loredana Ureche-Rangau & Quiterie de Rorthays, 2009. "More on the volatility-trading volume relationship in emerging markets: The Chinese stock market," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(7), pages 779-799.
    14. Siem Jan Koopman & Soon Yip Wong, 2006. "Extracting Business Cycles using Semi-parametric Time-varying Spectra with Applications to US Macroeconomic Time Series," Tinbergen Institute Discussion Papers 06-105/4, Tinbergen Institute.
    15. Zhelin Huang & Ngai Hang Chan, 2020. "Walsh Fourier Transform of Locally Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 312-340, March.
    16. Ilu, Ahmad Ibraheem, 2020. "Exchange Rate Pass through to Stock Prices: A Multi GARCH Approach," MPRA Paper 98442, University Library of Munich, Germany.
    17. Rim Ammar Lamouchi, 2020. "Long Memory and Stock Market Efficiency: Case of Saudi Arabia," International Journal of Economics and Financial Issues, Econjournals, vol. 10(3), pages 29-34.
    18. Ngai Hang Chan & Chun Yip Yau & Rong-Mao Zhang, 2014. "Group LASSO for Structural Break Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 590-599, June.
    19. Mark Fiecas & Hernando Ombao, 2016. "Modeling the Evolution of Dynamic Brain Processes During an Associative Learning Experiment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1440-1453, October.
    20. Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:33:y:2015:i:2:p:296-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.