IDEAS home Printed from https://ideas.repec.org/a/taf/intecj/v20y2006i1p109-128.html
   My bibliography  Save this article

Is there a duration dependence in Taiwan's business cycles?

Author

Listed:
  • Shyh-Wei Chen
  • Chung-Hua Shen

Abstract

This paper intends to investigate the duration dependent feature of Taiwan's business cycles. The constant Markov switching model is revised to take account of the duration dependent feature. The most innovative findings herein are that there is no duration dependence for contraction for the circa pre-1990 periods and no duration dependence for expansion for the circa post-1990 periods. However, there is duration dependence for economic expansion for the circa pre-1990 and duration dependence for contraction for circa post-1990 periods, respectively. In addition, the recessionary dates identified by the duration dependent Markov switching model are identical to the officially defined recessionary chronologies.

Suggested Citation

  • Shyh-Wei Chen & Chung-Hua Shen, 2006. "Is there a duration dependence in Taiwan's business cycles?," International Economic Journal, Taylor & Francis Journals, vol. 20(1), pages 109-128.
  • Handle: RePEc:taf:intecj:v:20:y:2006:i:1:p:109-128
    DOI: 10.1080/10168730500515357
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/10168730500515357
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(03), pages 409-431, August.
    2. Ghysels, Eric, 1994. "On the Periodic Structure of the Business Cycle," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 289-298, July.
    3. Hamilton, James D & Gang, Lin, 1996. "Stock Market Volatility and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 573-593, Sept.-Oct.
    4. Layton, Allan P., 1998. "A further test of the influence of leading indicators on the probability of US business cycle phase shifts," International Journal of Forecasting, Elsevier, vol. 14(1), pages 63-70, March.
    5. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    6. Chauvet, Marcelle, 1998. "An Econometric Characterization of Business Cycle Dynamics with Factor Structure and Regime Switching," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 969-996, November.
    7. Durland, J Michael & McCurdy, Thomas H, 1994. "Duration-Dependent Transitions in a Markov Model of U.S. GNP Growth," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 279-288, July.
    8. Filardo, Andrew J. & Gordon, Stephen F., 1998. "Business cycle durations," Journal of Econometrics, Elsevier, vol. 85(1), pages 99-123, July.
    9. Francis X. Diebold & Glenn Rudebusch & Daniel Sichel, 1993. "Further Evidence on Business-Cycle Duration Dependence," NBER Chapters,in: Business Cycles, Indicators and Forecasting, pages 255-284 National Bureau of Economic Research, Inc.
    10. Chang-Jin Kim & Charles R. Nelson, 1998. "Business Cycle Turning Points, A New Coincident Index, And Tests Of Duration Dependence Based On A Dynamic Factor Model With Regime Switching," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 188-201, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vitor Castro, 2015. "The Portuguese business cycle: chronology and duration dependence," Empirical Economics, Springer, vol. 49(1), pages 325-342, August.
    2. Vítor Castro, 2011. "The Portuguese Business Cycle: Chronology and Duration Dependence," NIPE Working Papers 11/2011, NIPE - Universidade do Minho.
    3. Vitor Castro, 2013. "The Portuguese stock market cycle: Chronology and duration dependence," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(1), pages 1-23.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:intecj:v:20:y:2006:i:1:p:109-128. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RIEJ20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.