IDEAS home Printed from https://ideas.repec.org/a/taf/apfiec/v8y1998i5p541-551.html
   My bibliography  Save this article

Estimating structural exchange rate models by artificial neural networks

Author

Listed:
  • Joseph Plasmans
  • William Verkooijen
  • Hennie Daniels

Abstract

No theory of structural exchange rate determination has yet been found that performs well in prediction experiments. Only very seldom has the simple random walk model been significantly outperformed. Referring to three, sometimes highly nonlinear, monetary and nonmonetary structural exchange rate models, a feedforward artificial neural network specification is investigated to determine whether it improves the prediction performance of structural and random walk exchange rate models. A new test for univariate nonlinear cointegration is also derived. Important nonlinearities are not detected for monthly data of US dollar rates in Deutsche marks, Dutch guilders, British pounds and Japanese yens.

Suggested Citation

  • Joseph Plasmans & William Verkooijen & Hennie Daniels, 1998. "Estimating structural exchange rate models by artificial neural networks," Applied Financial Economics, Taylor & Francis Journals, vol. 8(5), pages 541-551.
  • Handle: RePEc:taf:apfiec:v:8:y:1998:i:5:p:541-551
    DOI: 10.1080/096031098332844
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/096031098332844
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/096031098332844?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Verkooijen, W.J.H. & Plasmans, J.E.J. & Daniëls, H.A.M., 1995. "Long-run exchange rate determination: A neural network study," SESO Working Papers 1995017, University of Antwerp, Faculty of Business and Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panda, Chakradhara & Narasimhan, V., 2007. "Forecasting exchange rate better with artificial neural network," Journal of Policy Modeling, Elsevier, vol. 29(2), pages 227-236.
    2. Chun-Teck Lye & Tze-Haw Chan & Chee-Wooi Hooy, 2012. "Nonlinear Analysis Of Chinese And Malaysian Exchange Rates Predictability With Monetary Fundamentals," Journal of Global Business and Economics, Global Research Agency, vol. 5(1), pages 38-49, July.
    3. Alper Özün, 2006. "Using New Information Technologies for Modelling Data on Global Markets: An Efficient Interaction between "Artificial" Human Brain and Economics," Papers of the Annual IUE-SUNY Cortland Conference in Economics, in: Oguz Esen & Ayla Ogus (ed.), Proceedings of the Conference on Human and Economic Resources, pages 349-359, Izmir University of Economics.
    4. Stelios Bekiros, 2007. "A neurofuzzy model for stock market trading," Applied Economics Letters, Taylor & Francis Journals, vol. 14(1), pages 53-57.
    5. Nikola Gradojevic & Jing Yang, 2000. "The Application of Artificial Neural Networks to Exchange Rate Forecasting: The Role of Market Microstructure Variables," Staff Working Papers 00-23, Bank of Canada.
    6. Marcos Alvarez-Diaz & Alberto Alvarez, 2003. "Forecasting exchange rates using genetic algorithms," Applied Economics Letters, Taylor & Francis Journals, vol. 10(6), pages 319-322.
    7. Boldea, O. & Engwerda, J.C. & Michalak, T. & Plasmans, J.E.J. & Salmah, S., 2011. "A Simulation Study of an ASEAN Monetary Union (Replaces CentER DP 2010-100)," Discussion Paper 2011-098, Tilburg University, Center for Economic Research.
    8. Ahmad Zubaidi Baharumshah & Liew Khim Sen & Lim Kian Ping, 2003. "Exchange Rates Forecasting Model: An Alternative Estimation Procedure," International Finance 0307005, University Library of Munich, Germany.
    9. Jing Yang & Nikola Gradojevic, 2006. "Non-linear, non-parametric, non-fundamental exchange rate forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(4), pages 227-245.
    10. Cem Kadilar & Muammer Simsek & Cagdas Hakan Aladag, 2009. "Forecasting The Exchange Rate Series With Ann: The Case Of Turkey," Istanbul University Econometrics and Statistics e-Journal, Department of Econometrics, Faculty of Economics, Istanbul University, vol. 9(1), pages 17-29, May.
    11. Plasmans, J.E.J., 2001. "Currency Crises and Economic Monetary Cooperation : An Application to South East Asia and Comparison with Mexico, Brazil and Europe," Other publications TiSEM d740e32a-4dff-44ad-ae39-0, Tilburg University, School of Economics and Management.
    12. Jo-Hui Chen & Yen-Po Fang, 2011. "A study on the modified components of Asian Currency Unit: an application of the Artificial Neural Network," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(2), pages 329-347, February.
    13. Stavros Degiannakis & Evdokia Xekalaki, 2007. "Assessing the performance of a prediction error criterion model selection algorithm in the context of ARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 17(2), pages 149-171.
    14. Malhotra, Rashmi & Malhotra, D. K., 2003. "Evaluating consumer loans using neural networks," Omega, Elsevier, vol. 31(2), pages 83-96, April.
    15. Poghosyan, Karen & Boldea, Otilia, 2013. "Structural versus matching estimation: Transmission mechanisms in Armenia," Economic Modelling, Elsevier, vol. 30(C), pages 136-148.
    16. Rakesh K. Bissoondeeal & Michail Karoglou & Alicia M. Gazely, 2011. "Forecasting The Uk/Us Exchange Rate With Divisia Monetary Models And Neural Networks," Scottish Journal of Political Economy, Scottish Economic Society, vol. 58(1), pages 127-152, February.
    17. Engwerda, J. & Boldea, O. & Michalak, T. & Plasmans, J. & Salmah,, 2012. "A simulation study of an ASEAN monetary union," Economic Modelling, Elsevier, vol. 29(5), pages 1870-1890.
    18. Poghosyan, K., 2012. "Structural and reduced-form modeling and forecasting with application to Armenia," Other publications TiSEM ad1a24c3-15e6-4f04-b338-3, Tilburg University, School of Economics and Management.
    19. Jane Binner & Rakesh Bissoondeeal & Thomas Elger & Alicia Gazely & Andrew Mullineux, 2005. "A comparison of linear forecasting models and neural networks: an application to Euro inflation and Euro Divisia," Applied Economics, Taylor & Francis Journals, vol. 37(6), pages 665-680.
    20. Chun-Teck Lye & Tze-Haw Chan & Chee-Wooi Hooy, 2011. "Nonlinear prediction of Malaysian exchange rate with monetary fundamentals," Economics Bulletin, AccessEcon, vol. 31(3), pages 1960-1967.
    21. Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. Schirru, 1996. "Modelli di determinazione del tasso di cambio: un'analisi di cointegrazione," Working Paper CRENoS 199610, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:8:y:1998:i:5:p:541-551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAFE20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.