Improving Hydrological Modeling with Hybrid Models: A Comparative Study of Different Mechanisms for Coupling Deep Learning Models with Process-based Models
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-024-03780-5
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Wen-Ping Tsai & Dapeng Feng & Ming Pan & Hylke Beck & Kathryn Lawson & Yuan Yang & Jiangtao Liu & Chaopeng Shen, 2021. "From calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific modeling," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
- Sajjad M. Vatanchi & Hossein Etemadfard & Mahmoud F. Maghrebi & Rouzbeh Shad, 2023. "A Comparative Study on Forecasting of Long-term Daily Streamflow using ANN, ANFIS, BiLSTM and CNN-GRU-LSTM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4769-4785, September.
- Markus Reichstein & Gustau Camps-Valls & Bjorn Stevens & Martin Jung & Joachim Denzler & Nuno Carvalhais & Prabhat, 2019. "Deep learning and process understanding for data-driven Earth system science," Nature, Nature, vol. 566(7743), pages 195-204, February.
- Anbang Peng & Xiaoli Zhang & Wei Xu & Yuanyang Tian, 2022. "Effects of Training Data on the Learning Performance of LSTM Network for Runoff Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2381-2394, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xuan Li & Xiaoping Zhou & Jingming Hou & Yuan Liu & Shuhong Xue & Huan Ma & Bowen Su, 2024. "A Hydrodynamic Model and Data-Driven Evolutionary Multi-Objective Optimization Algorithm Based Optimal Operation Method for Multi-barrage Flood Control," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4323-4341, September.
- Xiaoyang Li & Lei Ye & Xuezhi Gu & Jinggang Chu & Jin Wang & Chi Zhang & Huicheng Zhou, 2024. "Development of A Distributed Modeling Framework Considering Spatiotemporally Varying Hydrological Processes for Sub-Daily Flood Forecasting in Semi-Humid and Semi-Arid Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(10), pages 3725-3754, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ziyi Mei & Tao Peng & Lu Chen & Vijay P. Singh & Bin Yi & Zhiyuan Leng & Xiaoxue Gan & Tao Xie, 2025. "Coupling SWAT and LSTM for Improving Daily Streamflow Simulation in a Humid and Semi-humid River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(1), pages 397-418, January.
- Licheng Liu & Wang Zhou & Kaiyu Guan & Bin Peng & Shaoming Xu & Jinyun Tang & Qing Zhu & Jessica Till & Xiaowei Jia & Chongya Jiang & Sheng Wang & Ziqi Qin & Hui Kong & Robert Grant & Symon Mezbahuddi, 2024. "Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Rozenstein, Offer & Fine, Lior & Malachy, Nitzan & Richard, Antoine & Pradalier, Cedric & Tanny, Josef, 2023. "Data-driven estimation of actual evapotranspiration to support irrigation management: Testing two novel methods based on an unoccupied aerial vehicle and an artificial neural network," Agricultural Water Management, Elsevier, vol. 283(C).
- Jiang, Hou & Lu, Ning & Huang, Guanghui & Yao, Ling & Qin, Jun & Liu, Hengzi, 2020. "Spatial scale effects on retrieval accuracy of surface solar radiation using satellite data," Applied Energy, Elsevier, vol. 270(C).
- Wen Zhang & Jing Li & Yunhao Chen & Yang Li, 2019. "A Surrogate-Based Optimization Design and Uncertainty Analysis for Urban Flood Mitigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4201-4214, September.
- Feng, Jiaojiao & Wang, Weizhen & Xu, Feinan & Wang, Shengtang, 2024. "Evaluating the ability of deep learning on actual daily evapotranspiration estimation over the heterogeneous surfaces," Agricultural Water Management, Elsevier, vol. 291(C).
- Mohanad A. Deif & Ahmed A. A. Solyman & Mohammed H. Alsharif & Seungwon Jung & Eenjun Hwang, 2021. "A Hybrid Multi-Objective Optimizer-Based SVM Model for Enhancing Numerical Weather Prediction: A Study for the Seoul Metropolitan Area," Sustainability, MDPI, vol. 14(1), pages 1-17, December.
- Zhang, Shuangyi & Li, Xichen, 2021. "Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method," Energy, Elsevier, vol. 217(C).
- Florian Reiner & Martin Brandt & Xiaoye Tong & David Skole & Ankit Kariryaa & Philippe Ciais & Andrew Davies & Pierre Hiernaux & Jérôme Chave & Maurice Mugabowindekwe & Christian Igel & Stefan Oehmcke, 2023. "More than one quarter of Africa’s tree cover is found outside areas previously classified as forest," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Veysi Kartal & Erkan Karakoyun & Muhammed Ernur Akiner & Okan Mert Katipoğlu & Alban Kuriqi, 2025. "Optimizing river flow rate predictions: integrating cognitive approaches and meteorological insights," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(5), pages 5729-5756, March.
- Wang, Yukuan & Liu, Jingxian & Liu, Ryan Wen & Wu, Weihuang & Liu, Yang, 2023. "Interval prediction of vessel trajectory based on lower and upper bound estimation and attention-modified LSTM with bayesian optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
- Gianluca Biggi & Martina Iori & Julia Mazzei & Andrea Mina, 2024. "Green Intelligence: The AI content of green technologies," LEM Papers Series 2024/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- He, Xinlei & Liu, Shaomin & Xu, Tongren & Yu, Kailiang & Gentine, Pierre & Zhang, Zhe & Xu, Ziwei & Jiao, Dandan & Wu, Dongxing, 2022. "Improving predictions of evapotranspiration by integrating multi-source observations and land surface model," Agricultural Water Management, Elsevier, vol. 272(C).
- Wang, Yangjun & Liu, Kefeng & Zhang, Ren & Qian, Longxia & Shan, Yulong, 2021. "Feasibility of the Northeast Passage: The role of vessel speed, route planning, and icebreaking assistance determined by sea-ice conditions for the container shipping market during 2020–2030," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
- Richards, Daniel Rex & Lavorel, Sandra, 2022. "Integrating social media data and machine learning to analyse scenarios of landscape appreciation," Ecosystem Services, Elsevier, vol. 55(C).
- Xi Yang & Zhihe Chen & Min Qin, 2024. "Monthly Runoff Prediction Via Mode Decomposition-Recombination Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 269-286, January.
- Fuzhi Lu & Huayu Lu & Yao Gu & Pengyu Lin & Zhengyao Lu & Qiong Zhang & Hongyan Zhang & Fan Yang & Xiaoyi Dong & Shuangwen Yi & Deliang Chen & Francesco S. R. Pausata & Maya Ben-Yami & Jennifer V. Mec, 2025. "Tipping point-induced abrupt shifts in East Asian hydroclimate since the Last Glacial Maximum," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
- Galaz, Victor & Centeno, Miguel A. & Callahan, Peter W. & Causevic, Amar & Patterson, Thayer & Brass, Irina & Baum, Seth & Farber, Darryl & Fischer, Joern & Garcia, David & McPhearson, Timon & Jimenez, 2021. "Artificial intelligence, systemic risks, and sustainability," Technology in Society, Elsevier, vol. 67(C).
- Wan, Zijing & Wei, Fulong & Peng, Jiale & Deng, Chao & Ding, Siqi & Xu, Dongwei & Luo, Xiaobing, 2023. "Application of physical model-based machine learning to the temperature prediction of electronic device in oil-gas exploration logging," Energy, Elsevier, vol. 282(C).
- Hood, Raleigh R. & Shenk, Gary W. & Dixon, Rachel L. & Smith, Sean M.C. & Ball, William P. & Bash, Jesse O. & Batiuk, Rich & Boomer, Kathy & Brady, Damian C. & Cerco, Carl & Claggett, Peter & de Mutse, 2021. "The Chesapeake Bay program modeling system: Overview and recommendations for future development," Ecological Modelling, Elsevier, vol. 456(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:7:d:10.1007_s11269-024-03780-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.