IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i4d10.1007_s11269-023-03730-7.html
   My bibliography  Save this article

Comparison of Classical and Machine Learning Methods in Estimation of Missing Streamflow Data

Author

Listed:
  • A. B. Dariane

    (K.N. Toosi University of Technology)

  • M. I. Borhan

    (K.N. Toosi University of Technology)

Abstract

Recovering missing data and access to a complete and accurate streamflow data is of great importance in water resources management. This article aims to comparatively investigate the application of different classical and machine learning-based methods in recovering missing streamflow data in three mountainous basins in northern Iran using 26 years of data duration extending from 1991 to 2017. These include Taleghan, Karaj, and Latyan basins that provide municipal water for the capital Tehran. Two periods of artificial gaps of data were considered to avoid possible duration-based impacts that may affect the results. For this purpose, several methods are investigated including simple and multiple linear regressions (LR & MLR), artificial neural network (ANN) with five different structures, support vector regression (SVR), M5 tree and two Adaptive Neuro-Fuzzy Inference System (ANFIS) comprising Subtractive (Sub-ANFIS) and fuzzy C-means (FCM-ANFIS) classification. Although these methods have been used in different problems in the past, but the comparison of all these methods and the application of ANFIS using two clustering methods in missing data is new. Overall, it was noticed that machine learning-based methods yield better outputs. For instance, in the Taleghan basin and in the gap during 2014–2017 period it shows that the evaluation criteria of Root Mean Square Error (RMSE), Nash–Sutcliffe Index (NSE) and Coefficient of Determination $${({\text{R}}}^{2})$$ ( R 2 ) for the Sub-ANFIS method are 1.67 $${{\text{m}}}^{3}/s$$ m 3 / s , 0.96 and 0.97, respectively, while these values for the LR are 3.46 $${{\text{m}}}^{3}/s$$ m 3 / s , 0.83 and 0.87 respectively. Also, in Latyan basin during the gap of 1991–1994, FCM-ANFIS was found to be the best method to recover the missing monthly flow data with RMSE, NSE and $${{\text{R}}}^{2}$$ R 2 criteria as 3.17 $${{\text{m}}}^{3}/s$$ m 3 / s , 0.88 and 0.92, respectively. In addition, results indicated that using the seasonal index in the artificial neural network model improves the estimations. Finally, a Social Choice (SC) method using the Borda count was employed to evaluate the overall performance of all methods.

Suggested Citation

  • A. B. Dariane & M. I. Borhan, 2024. "Comparison of Classical and Machine Learning Methods in Estimation of Missing Streamflow Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(4), pages 1453-1478, March.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:4:d:10.1007_s11269-023-03730-7
    DOI: 10.1007/s11269-023-03730-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03730-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03730-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krishna Singh & Mahesh Pal & V. Singh, 2010. "Estimation of Mean Annual Flood in Indian Catchments Using Backpropagation Neural Network and M5 Model Tree," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2007-2019, August.
    2. Keshtegar, Behrooz & Kisi, Ozgur, 2018. "RM5Tree: Radial basis M5 model tree for accurate structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 49-61.
    3. Mohammadi, Babak & Mehdizadeh, Saeid, 2020. "Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 237(C).
    4. Farzane Karami & Alireza B. Dariane, 2018. "Many-Objective Multi-Scenario Algorithm for Optimal Reservoir Operation Under Future Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(12), pages 3887-3902, September.
    5. Alireza Dariane & Farzane Karami, 2014. "Deriving Hedging Rules of Multi-Reservoir System by Online Evolving Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3651-3665, September.
    6. Ali Rahimikhoob & Maryam Asadi & Mahmood Mashal, 2013. "A Comparison Between Conventional and M5 Model Tree Methods for Converting Pan Evaporation to Reference Evapotranspiration for Semi-Arid Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4815-4826, November.
    7. Ahmad Khazaee Poul & Mojtaba Shourian & Hadi Ebrahimi, 2019. "A Comparative Study of MLR, KNN, ANN and ANFIS Models with Wavelet Transform in Monthly Stream Flow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2907-2923, June.
    8. Xin Jing & Jungang Luo & Jingmin Wang & Ganggang Zuo & Na Wei, 2022. "A Multi-imputation Method to Deal With Hydro-Meteorological Missing Values by Integrating Chain Equations and Random Forest," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1159-1173, March.
    9. Wai Yan Lai & K. K. Kuok, 2019. "A Study on Bayesian Principal Component Analysis for Addressing Missing Rainfall Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2615-2628, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. B. Dariane & E. Pouryafar, 2021. "Quantifying and projection of the relative impacts of climate change and direct human activities on streamflow fluctuations," Climatic Change, Springer, vol. 165(1), pages 1-20, March.
    2. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Deo, Ravinesh C., 2020. "Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Xiao, Mi & Zhang, Jinhao & Gao, Liang, 2021. "A Kriging-assisted sampling method for reliability analysis of structures with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    4. Roy, Atin & Chakraborty, Subrata, 2022. "Reliability analysis of structures by a three-stage sequential sampling based adaptive support vector regression model," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    5. Feiyan Chen & Zhigao Zhou & Aiwen Lin & Jiqiang Niu & Wenmin Qin & Zhong Yang, 2019. "Evaluation of Direct Horizontal Irradiance in China Using a Physically-Based Model and Machine Learning Methods," Energies, MDPI, vol. 12(1), pages 1-19, January.
    6. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    7. Zhiqiang Jiang & Zhengyang Tang & Yi Liu & Yuyun Chen & Zhongkai Feng & Yang Xu & Hairong Zhang, 2019. "Area Moment and Error Based Forecasting Difficulty and its Application in Inflow Forecasting Level Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4553-4568, October.
    8. Ana C. Cebrián & Ricardo Salillas, 2021. "Forecasting High-Frequency River Level Series Using Double Switching Regression with ARMA Errors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 299-313, January.
    9. Manish Goyal & C. Ojha, 2011. "Estimation of Scour Downstream of a Ski-Jump Bucket Using Support Vector and M5 Model Tree," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2177-2195, July.
    10. Thakolpat Khampuengson & Wenjia Wang, 2023. "Novel Methods for Imputing Missing Values in Water Level Monitoring Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 851-878, January.
    11. Zhou, Hanmi & Ma, Linshuang & Niu, Xiaoli & Xiang, Youzhen & Chen, Jiageng & Su, Yumin & Li, Jichen & Lu, Sibo & Chen, Cheng & Wu, Qi, 2024. "A novel hybrid model combined with ensemble embedded feature selection method for estimating reference evapotranspiration in the North China Plain," Agricultural Water Management, Elsevier, vol. 296(C).
    12. Wei Zhang & Xiaohui Lei & Pan Liu & Xu Wang & Hao Wang & Peibing Song, 2019. "Identifying the Relationship between Assignments of Scenario Weights and their Positions in the Derivation of Reservoir Operating Rules under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 261-279, January.
    13. Manish Kumar & Anuradha Kumari & Daniel Prakash Kushwaha & Pravendra Kumar & Anurag Malik & Rawshan Ali & Alban Kuriqi, 2020. "Estimation of Daily Stage–Discharge Relationship by Using Data-Driven Techniques of a Perennial River, India," Sustainability, MDPI, vol. 12(19), pages 1-21, September.
    14. Keshtegar, Behrooz & Mert, Cihan & Kisi, Ozgur, 2018. "Comparison of four heuristic regression techniques in solar radiation modeling: Kriging method vs RSM, MARS and M5 model tree," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 330-341.
    15. Babak Mohammadi & Farshad Ahmadi & Saeid Mehdizadeh & Yiqing Guan & Quoc Bao Pham & Nguyen Thi Thuy Linh & Doan Quang Tri, 2020. "Developing Novel Robust Models to Improve the Accuracy of Daily Streamflow Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3387-3409, August.
    16. Zhang, Jinhao & Gao, Liang & Xiao, Mi, 2020. "A composite-projection-outline-based approximation method for system reliability analysis with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    17. Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
    18. Rana Muhammad Adnan & Andrea Petroselli & Salim Heddam & Celso Augusto Guimarães Santos & Ozgur Kisi, 2021. "Comparison of different methodologies for rainfall–runoff modeling: machine learning vs conceptual approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2987-3011, February.
    19. Ozgur Kisi & Mehmet Ardiçlioğlu & Arzu M. W. Hadi & Alban Kuriqi & Christoph Kulls, 2023. "Estimation of Mean Velocity Upstream and Downstream of a Bridge Model Using Metaheuristic Regression Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(14), pages 5559-5580, November.
    20. Phon Sheng Hou & Lokman Mohd Fadzil & Selvakumar Manickam & Mahmood A. Al-Shareeda, 2023. "Vector Autoregression Model-Based Forecasting of Reference Evapotranspiration in Malaysia," Sustainability, MDPI, vol. 15(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:4:d:10.1007_s11269-023-03730-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.