IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i3d10.1007_s11269-023-03705-8.html
   My bibliography  Save this article

Meteorological to Agricultural Drought Propagation Time Analysis and Driving Factors Recognition Considering Time-Variant Characteristics

Author

Listed:
  • Chengguo Wu

    (Hefei University of Technology
    Institute of Water Resources and Environmental Systems Engineering, Hefei University of Technology)

  • Yin Xu

    (Hefei University of Technology)

  • Juliang Jin

    (Hefei University of Technology
    Institute of Water Resources and Environmental Systems Engineering, Hefei University of Technology)

  • Yuliang Zhou

    (Hefei University of Technology
    Institute of Water Resources and Environmental Systems Engineering, Hefei University of Technology)

  • Boyu Nie

    (Hefei University of Technology)

  • Rui Li

    (Hefei University of Technology)

  • Yi Cui

    (Hefei University of Technology
    Institute of Water Resources and Environmental Systems Engineering, Hefei University of Technology)

  • Fei Tong

    (Hefei University of Technology)

  • Libing Zhang

    (Hefei University of Technology
    Institute of Water Resources and Environmental Systems Engineering, Hefei University of Technology)

Abstract

Drought propagation analysis is of great significance to develop reliable drought-resistant schemes. In this study, based on the construction of time-variant meteorological and agricultural drought indicators SPIt and SSMIt through Generalized Additive Models for Location, Scale and Shape (GAMLSS) method, the static and dynamic drought propagation time were defined and determined by Five-element Subtraction Set Pair Potential (FSSPP) and Copula function methods. Then, the driving factors resulted in meteorological to agricultural drought propagation were recognized through Pearson Correlation Coefficient (PCC) indicator. And finally, the application results of the proposed approach in Anhui province, China indicated that, (1) the static propagation time of meteorological to agricultural drought process varied within 1 to 4 months, and differed slightly in different seasons. And drought propagation time in spring and summer was noticeably longer than that of autumn and winter. (2) the dynamic drought propagation time presented decreasing trend in winter, spring and summer but displayed slight increasing trend in autumn in Anhui province. On the whole, the research findings are beneficial for theoretical and practical research of drought propagation system.

Suggested Citation

  • Chengguo Wu & Yin Xu & Juliang Jin & Yuliang Zhou & Boyu Nie & Rui Li & Yi Cui & Fei Tong & Libing Zhang, 2024. "Meteorological to Agricultural Drought Propagation Time Analysis and Driving Factors Recognition Considering Time-Variant Characteristics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(3), pages 991-1010, February.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:3:d:10.1007_s11269-023-03705-8
    DOI: 10.1007/s11269-023-03705-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03705-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03705-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Shiau, 2006. "Fitting Drought Duration and Severity with Two-Dimensional Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(5), pages 795-815, October.
    2. Stasinopoulos, D. Mikis & Rigby, Robert A., 2007. "Generalized Additive Models for Location Scale and Shape (GAMLSS) in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i07).
    3. Jagadish Padhiary & Kanhu Charan Patra & Sonam Sandeep Dash, 2022. "A Novel Approach to Identify the Characteristics of Drought under Future Climate Change Scenario," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5163-5189, October.
    4. G. P. Tsakiris & D. P. Loucks, 2023. "Adaptive Water Resources Management Under Climate Change: An Introduction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2221-2233, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    2. Ziqiang Xing & Denghua Yan & Cheng Zhang & Gang Wang & Dongdong Zhang, 2015. "Spatial Characterization and Bivariate Frequency Analysis of Precipitation and Runoff in the Upper Huai River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3291-3304, July.
    3. Panayi, Efstathios & Peters, Gareth W. & Danielsson, Jon & Zigrand, Jean-Pierre, 2018. "Designating market maker behaviour in limit order book markets," Econometrics and Statistics, Elsevier, vol. 5(C), pages 20-44.
    4. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    5. Katarzyna Baran-Gurgul, 2022. "The Risk of Extreme Streamflow Drought in the Polish Carpathians—A Two-Dimensional Approach," IJERPH, MDPI, vol. 19(21), pages 1-27, October.
    6. Christian Kleiber & Achim Zeileis, 2016. "Visualizing Count Data Regressions Using Rootograms," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
    7. Matteo Malavasi & Gareth W. Peters & Pavel V. Shevchenko & Stefan Truck & Jiwook Jang & Georgy Sofronov, 2021. "Cyber Risk Frequency, Severity and Insurance Viability," Papers 2111.03366, arXiv.org, revised Mar 2022.
    8. Zahra Sadat Hosseini & Mahnoosh Moghaddasi & Shahla Paimozd, 2023. "Simultaneous Monitoring of Different Drought Types Using Linear and Nonlinear Combination Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1125-1151, February.
    9. Tong, Edward N.C. & Mues, Christophe & Thomas, Lyn, 2013. "A zero-adjusted gamma model for mortgage loan loss given default," International Journal of Forecasting, Elsevier, vol. 29(4), pages 548-562.
    10. Alexander, Carol & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Sarabia, José María, 2012. "Generalized beta-generated distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1880-1897.
    11. Pinho, Luis Gustavo B. & Nobre, Juvêncio S. & Singer, Julio M., 2015. "Cook’s distance for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 126-136.
    12. Zhang, Peng & Qiu, Zhenguo & Shi, Chengchun, 2016. "simplexreg: an R package for regression analysis of proportional data using the simplex distribution," LSE Research Online Documents on Economics 102115, London School of Economics and Political Science, LSE Library.
    13. Hofner, Benjamin & Mayr, Andreas & Schmid, Matthias, 2016. "gamboostLSS: An R Package for Model Building and Variable Selection in the GAMLSS Framework," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i01).
    14. D. Chiru Naik & Sagar Rohidas Chavan & P. Sonali, 2023. "Incorporating the climate oscillations in the computation of meteorological drought over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2617-2646, July.
    15. Rina Wu & Jiquan Zhang & Yuhai Bao & Enliang Guo, 2019. "Run Theory and Copula-Based Drought Risk Analysis for Songnen Grassland in Northeastern China," Sustainability, MDPI, vol. 11(21), pages 1-17, October.
    16. Helske, Jouni, 2017. "KFAS: Exponential Family State Space Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i10).
    17. Kuntz, Laura-Chloé, 2020. "Beta dispersion and market timing," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 235-256.
    18. Xiong-Fei Liu & Shi-Xin Wang & Yi Zhou & Fu-Tao Wang & Guang Yang & Wen-Liang Liu, 2016. "Spatial analysis of meteorological drought return periods in China using Copulas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 367-388, January.
    19. Zahra Fahimirad & Nazanin Shahkarami, 2021. "The Impact of Climate Change on Hydro-Meteorological Droughts Using Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 3969-3993, September.
    20. Stefan Seidel & Peter Dal-Bianco & Eleonore Pablik & Nina Müller & Claudia Schadenhofer & Claus Lamm & Gerhard Klösch & Doris Moser & Stefanie Klug & Gisela Pusswald & Eduard Auff & Johann Lehrner, 2015. "Depressive Symptoms are the Main Predictor for Subjective Sleep Quality in Patients with Mild Cognitive Impairment—A Controlled Study," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:3:d:10.1007_s11269-023-03705-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.