IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i3d10.1007_s11269-023-03430-2.html
   My bibliography  Save this article

Coupling Time and Non-Time Series Models to Simulate the Flood Depth at Urban Flooded Area

Author

Listed:
  • Hongfa Wang

    (Zhengzhou University)

  • Xinjian Guan

    (Zhengzhou University)

  • Yu Meng

    (Zhengzhou University)

  • Zening Wu

    (Zhengzhou University)

  • Kun Wang

    (China Institute of Water Resources and Hydropower Research)

  • Huiliang Wang

    (Zhengzhou University)

Abstract

The flood produced by short duration heavy rainfall events in cities will still exist after raining and continues to cause harm and impact. To accurately predict the depth and duration of the flood, a coupled model of the extreme gradient boosting and long short-term memory algorithms was proposed. A practical application of three representative flooded points in the Zhengzhou city, China, the results showed the coupled model could fit and forecast the flood. The average of Mean relative error, Nash–Sutcliffe efficiency coefficient and Qualified rate of validation data were 9.13%, 0.96 and 90.3% respectively, which verified the superiority of the method in the flood prediction. And the flood processes at the flooded points caused by design rainfall under different return periods were predicted by the coupled model. The growth rates of the flood duration and peak flood depth were all the highest during the return periods 1a-2a. This study proves that the coupled model has great potential in predictions of flood and could provide scientific basis guidance for disaster reduction.

Suggested Citation

  • Hongfa Wang & Xinjian Guan & Yu Meng & Zening Wu & Kun Wang & Huiliang Wang, 2023. "Coupling Time and Non-Time Series Models to Simulate the Flood Depth at Urban Flooded Area," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1275-1295, February.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:3:d:10.1007_s11269-023-03430-2
    DOI: 10.1007/s11269-023-03430-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03430-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03430-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Lu & Liu, Shan & Liu, Rui & Wang, Lin, 2018. "Effective long short-term memory with differential evolution algorithm for electricity price prediction," Energy, Elsevier, vol. 162(C), pages 1301-1314.
    2. Bing-Chen Jhong & Jhih-Huang Wang & Gwo-Fong Lin, 2016. "Improving the Long Lead-Time Inundation Forecasts Using Effective Typhoon Characteristics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4247-4271, September.
    3. Han, Tian & Peng, Qinke & Zhu, Zhibo & Shen, Yiqing & Huang, Huijun & Abid, Nahiyoon Nabeel, 2020. "A pattern representation of stock time series based on DTW," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    4. Shuang Yao & Nengcheng Chen & Wenying Du & Chao Wang & Cuizhen Chen, 2021. "A Cellular Automata Based Rainfall-Runoff Model for Urban Inundation Analysis Under Different Land Uses," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1991-2006, April.
    5. Wenchao Qi & Chao Ma & Hongshi Xu & Zifan Chen & Kai Zhao & Hao Han, 2021. "Low Impact Development Measures Spatial Arrangement for Urban Flood Mitigation: An Exploratory Optimal Framework based on Source Tracking," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3755-3770, September.
    6. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & He, Hai & He, Jian & Yin, Hao & Zhang, Yaxin, 2021. "Coupled hydrology-crop growth model incorporating an improved evapotranspiration module," Agricultural Water Management, Elsevier, vol. 246(C).
    7. Brenden Jongman, 2018. "Effective adaptation to rising flood risk," Nature Communications, Nature, vol. 9(1), pages 1-3, December.
    8. Tao Cheng & Zongxue Xu & Siyang Hong & Sulin Song, 2017. "Flood Risk Zoning by Using 2D Hydrodynamic Modeling: A Case Study in Jinan City," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-8, October.
    9. Lin She & Xue-yi You, 2019. "A Dynamic Flow Forecast Model for Urban Drainage Using the Coupled Artificial Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3143-3153, July.
    10. Bao-Jian Li & Guo-Liang Sun & Yan Liu & Wen-Chuan Wang & Xu-Dong Huang, 2022. "Monthly Runoff Forecasting Using Variational Mode Decomposition Coupled with Gray Wolf Optimizer-Based Long Short-term Memory Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2095-2115, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henrich Grežo & Matej Močko & Martin Izsóff & Gréta Vrbičanová & František Petrovič & Jozef Straňák & Zlatica Muchová & Martina Slámová & Branislav Olah & Ivo Machar, 2020. "Flood Risk Assessment for the Long-Term Strategic Planning Considering the Placement of Industrial Parks in Slovakia," Sustainability, MDPI, vol. 12(10), pages 1-20, May.
    2. Antonio Ledda & Elisabetta Anna Di Cesare & Giovanni Satta & Gianluca Cocco & Giovanna Calia & Filippo Arras & Annalisa Congiu & Emanuela Manca & Andrea De Montis, 2020. "Adaptation to Climate Change and Regional Planning: A Scrutiny of Sectoral Instruments," Sustainability, MDPI, vol. 12(9), pages 1-15, May.
    3. Song-Yue Yang & Bing-Chen Jhong & You-Da Jhong & Tsung-Tang Tsai & Chang-Shian Chen, 2023. "Long short-term memory integrating moving average method for flood inundation depth forecasting based on observed data in urban area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2339-2361, March.
    4. Syed Ahmad Hakim Bin Syed Muzamil & Noor Yasmin Zainun & Nadiatul Nazleen Ajman & Noralfishah Sulaiman & Shabir Hussain Khahro & Munzilah Md. Rohani & Saifullizan Mohd Bukari Mohd & Hilton Ahmad, 2022. "Proposed Framework for the Flood Disaster Management Cycle in Malaysia," Sustainability, MDPI, vol. 14(7), pages 1-21, March.
    5. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression," Applied Energy, Elsevier, vol. 239(C), pages 610-625.
    6. Reguero, Borja G. & Beck, Michael W. & Schmid, David & Stadtmüller, Daniel & Raepple, Justus & Schüssele, Stefan & Pfliegner, Kerstin, 2020. "Financing coastal resilience by combining nature-based risk reduction with insurance," Ecological Economics, Elsevier, vol. 169(C).
    7. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).
    8. Dounia El Bourakadi & Hiba Ramadan & Ali Yahyaouy & Jaouad Boumhidi, 2023. "A robust energy management approach in two-steps ahead using deep learning BiLSTM prediction model and type-2 fuzzy decision-making controller," Fuzzy Optimization and Decision Making, Springer, vol. 22(4), pages 645-667, December.
    9. Tong Xu & Zhiqiang Xie & Fei Zhao & Yimin Li & Shouquan Yang & Yangbin Zhang & Siqiao Yin & Shi Chen & Xuan Li & Sidong Zhao & Zhiqun Hou, 2022. "Permeability control and flood risk assessment of urban underlying surface: a case study of Runcheng south area, Kunming," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 661-686, March.
    10. Lu, Xin & Qiu, Jing & Lei, Gang & Zhu, Jianguo, 2022. "Scenarios modelling for forecasting day-ahead electricity prices: Case studies in Australia," Applied Energy, Elsevier, vol. 308(C).
    11. Bilgili, Mehmet & Pinar, Engin, 2023. "Gross electricity consumption forecasting using LSTM and SARIMA approaches: A case study of Türkiye," Energy, Elsevier, vol. 284(C).
    12. Juan Carlos Olivares-Galvan & Hector Ascencion-Mestiza & Serguei Maximov & Efrén Mezura-Montes & Rafael Escarela-Perez, 2023. "Design of a Three-Phase Shell-Type Distribution Transformer Using Evolutionary Algorithms," Energies, MDPI, vol. 16(10), pages 1-16, May.
    13. Ethem Çanakoğlu & Esra Adıyeke, 2020. "Comparison of Electricity Spot Price Modelling and Risk Management Applications," Energies, MDPI, vol. 13(18), pages 1-22, September.
    14. Hu, Huanling & Wang, Lin & Lv, Sheng-Xiang, 2020. "Forecasting energy consumption and wind power generation using deep echo state network," Renewable Energy, Elsevier, vol. 154(C), pages 598-613.
    15. Hongshi Xu & Kui Xu & Tianye Wang & Wanjie Xue, 2022. "Investigating Flood Risks of Rainfall and Storm Tides Affected by the Parameter Estimation Coupling Bivariate Statistics and Hydrodynamic Models in the Coastal City," IJERPH, MDPI, vol. 19(19), pages 1-18, October.
    16. Gabriela Czibula & Andrei Mihai & Alexandra-Ioana Albu & Istvan-Gergely Czibula & Sorin Burcea & Abdelkader Mezghani, 2021. "AutoNowP : An Approach Using Deep Autoencoders for Precipitation Nowcasting Based on Weather Radar Reflectivity Prediction," Mathematics, MDPI, vol. 9(14), pages 1-21, July.
    17. Lin Sun & Suisui Chen & Jiucheng Xu & Yun Tian, 2019. "Improved Monarch Butterfly Optimization Algorithm Based on Opposition-Based Learning and Random Local Perturbation," Complexity, Hindawi, vol. 2019, pages 1-20, February.
    18. Yang, Haolin & Schell, Kristen R., 2022. "GHTnet: Tri-Branch deep learning network for real-time electricity price forecasting," Energy, Elsevier, vol. 238(PC).
    19. Jiseong Noh & Hyun-Ji Park & Jong Soo Kim & Seung-June Hwang, 2020. "Gated Recurrent Unit with Genetic Algorithm for Product Demand Forecasting in Supply Chain Management," Mathematics, MDPI, vol. 8(4), pages 1-14, April.
    20. Jinping Zhang & Hang Zhang & Hongyuan Fang, 2022. "Study on Urban Rainstorms Design Based on Multivariate Secondary Return Period," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2293-2307, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:3:d:10.1007_s11269-023-03430-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.