IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i3d10.1007_s11269-023-03700-z.html
   My bibliography  Save this article

A Multi-Criteria Combination Approach to Determine Spatial Intervention Prioritization of Urban Flood Based on Source Tracking Analysis

Author

Listed:
  • Xinghua Wang

    (Xi’an University of Technology)

  • Jingming Hou

    (Xi’an University of Technology)

  • Guangyao Hu

    (China Water Resources and Hydropower Seventh Engineering Bureau Co., Ltd.)

  • Xujun Gao

    (Xi’an University of Technology)

  • Ruozhu Shen

    (Ningxia Capital Sponge City Construction & Development Co., Ltd.)

Abstract

Under the increasing stormwater events and consequent flood hazards, integrated flood management is increasingly becoming the most essential mitigation strategy to maximize the effectiveness of runoff reduction at the limitation of public budget. The research is aimed at proposed a multi-criteria combination approach to determine spatial intervention prioritization of urban flood based on source tracking analysis. First, Jinhua underpass catchment where an underpass is vulnerable to the impact of stormwater is selected as the case study. Second, source tracking analysis, which combining hydrodynamic model with rainfall-tracking model, is used to obtain the detailed dynamic information including water depth and contribution rate of different source areas. On the basis of source tracking analysis, from the perspective of source-process-end runoff volume management, five types of criteria are presented to evaluate the spatial intervention priority of each sub-area, entropy weight method is applied to combine useful information reflected by criteria 1–5 to form a comprehensive criterion identifying spatial priority of flood management. Notably, the results indicate that criteria extracted by source tracking analysis are highly effective in evaluating spatial priority for urban flood management. Specifically, criteria 1–5 estimate the importance in addressing runoff for different sub-areas from the view of source-progress-end, respectively. Moreover, the comprehensive criterion based on entropy weight method, an objective comprehensive evaluation method, can be used to guide the spatial prioritization of urban flood management for planners and decision-makers with respect to multi-perspective.

Suggested Citation

  • Xinghua Wang & Jingming Hou & Guangyao Hu & Xujun Gao & Ruozhu Shen, 2024. "A Multi-Criteria Combination Approach to Determine Spatial Intervention Prioritization of Urban Flood Based on Source Tracking Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(3), pages 893-914, February.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:3:d:10.1007_s11269-023-03700-z
    DOI: 10.1007/s11269-023-03700-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03700-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03700-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Omid Seyedashraf & Andrea Bottacin-Busolin & Julien J. Harou, 2021. "Many-Objective Optimization of Sustainable Drainage Systems in Urban Areas with Different Surface Slopes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2449-2464, June.
    2. Wenchao Qi & Chao Ma & Hongshi Xu & Zifan Chen & Kai Zhao & Hao Han, 2021. "Low Impact Development Measures Spatial Arrangement for Urban Flood Mitigation: An Exploratory Optimal Framework based on Source Tracking," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3755-3770, September.
    3. Chaohui Zhang & Mingyu He & Yishan Zhang, 2019. "Urban Sustainable Development Based on the Framework of Sponge City: 71 Case Studies in China," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Donglai Li & Jingming Hou & Yangwei Zhang & Minpeng Guo & Dawei Zhang, 2022. "Influence of Time Step Synchronization on Urban Rainfall-Runoff Simulation in a Hybrid CPU/GPU 1D-2D Coupled Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3417-3433, August.
    2. Keyu Luo & Zhenyu Wang & Wei Sha & Jiansheng Wu & Hongliang Wang & Qingliang Zhu, 2021. "Integrating Sponge City Concept and Neural Network into Land Suitability Assessment: Evidence from a Satellite Town of Shenzhen Metropolitan Area," Land, MDPI, vol. 10(8), pages 1-16, August.
    3. Jian Wang & Fei Xue & Ruiying Jing & Qiaohui Lu & Yilong Huang & Xiang Sun & Wenbo Zhu, 2021. "Regenerating Sponge City to Sponge Watershed through an Innovative Framework for Urban Water Resilience," Sustainability, MDPI, vol. 13(10), pages 1-36, May.
    4. Hongfa Wang & Xinjian Guan & Yu Meng & Zening Wu & Kun Wang & Huiliang Wang, 2023. "Coupling Time and Non-Time Series Models to Simulate the Flood Depth at Urban Flooded Area," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1275-1295, February.
    5. Heng Zhang & Qian Chang & Sui Li & Jiandong Huang, 2022. "Determining the Efficiency of the Sponge City Construction Pilots in China Based on the DEA-Malmquist Model," IJERPH, MDPI, vol. 19(18), pages 1-17, September.
    6. Mina Khosravi & Abbas Afshar & Amir Molajou, 2022. "Decision Tree-Based Conditional Operation Rules for Optimal Conjunctive Use of Surface and Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2013-2025, April.
    7. Helena Maria Fernandez & Fernando Granja-Martins & Olga Dziuba & David A. B. Pereira & Jorge M. G. P. Isidoro, 2023. "Comparison of Ratioing and RCNA Methods in the Detection of Flooded Areas Using Sentinel 2 Imagery (Case Study: Tulun, Russia)," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    8. Xiaoyi Liu & Yiqin Chen & Heng Zhang & Jiang Chang, 2025. "An Evaluation of Sponge City Construction and a Zoning Construction Strategy from the Perspective of New Quality Productive Forces: A Case Study of Suzhou, China," Land, MDPI, vol. 14(4), pages 1-21, April.
    9. Hongshi Xu & Kui Xu & Tianye Wang & Wanjie Xue, 2022. "Investigating Flood Risks of Rainfall and Storm Tides Affected by the Parameter Estimation Coupling Bivariate Statistics and Hydrodynamic Models in the Coastal City," IJERPH, MDPI, vol. 19(19), pages 1-18, October.
    10. Weike Chen & Jing Dong & Chaohua Yan & Hui Dong & Ping Liu, 2021. "What Causes Waterlogging?—Explore the Urban Waterlogging Control Scheme through System Dynamics Simulation," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    11. Xinghua Wang & Jingming Hou & Donglai Li & Bingyao Li & Xujun Gao & Yuan Liu, 2022. "A Coupled Hydrodynamic and Rainfall-tracking Model for Source-to-impact Analysis in Urban Inundation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5581-5598, November.
    12. Peihao Tong & Hongxi Yin & Zhifang Wang & Ian Trivers, 2022. "Combining Stormwater Management and Park Services to Mitigate Climate Change and Improve Human Well-Being: A Case Study of Sponge City Parks in Shanghai," Land, MDPI, vol. 11(9), pages 1-16, September.
    13. Seung Taek Chae & Eun-Sung Chung & Jiping Jiang, 2022. "Robust Siting of Permeable Pavement in Highly Urbanized Watersheds Considering Climate Change Using a Combination of Fuzzy-TOPSIS and the VIKOR Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 951-969, February.
    14. Chao Ma & Wenchao Qi & Hongshi Xu & Kai Zhao, 2022. "An integrated quantitative framework to assess the impacts of disaster-inducing factors on causing urban flood," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1903-1924, September.
    15. Husnain Tansar & Huan-Feng Duan & Ole Mark, 2022. "Catchment-Scale and Local-Scale Based Evaluation of LID Effectiveness on Urban Drainage System Performance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 507-526, January.
    16. Fábio André Matos & Peter Roebeling, 2022. "Modelling Impacts of Nature-Based Solutions on Surface Water Quality: A Rapid Review," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    17. Qimeng Yue & Kate Heal & Jingshan Yu & Qianyang Wang & Yuexin Zheng & Zhanliang Zhu & Yuan Liu & Shugao Xu & Xiaolei Yao, 2023. "The Performance of the Construction of a Water Ecological Civilization City: International Assessment and Comparison," Sustainability, MDPI, vol. 15(4), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:3:d:10.1007_s11269-023-03700-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.