IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i15d10.1007_s11269-023-03563-4.html
   My bibliography  Save this article

Evaluation of Feature Selection Methods in Estimation of Precipitation Based on Deep Learning Artificial Neural Networks

Author

Listed:
  • Mohammad Taghi Sattari

    (University of Tabriz
    Ankara University)

  • Anca Avram

    (Technical University of Cluj-Napoca, North University Center of Baia Mare)

  • Halit Apaydin

    (Ankara University)

  • Oliviu Matei

    (Technical University of Cluj-Napoca, North University Center of Baia Mare)

Abstract

Precipitation is the most important element of the water cycle and an indispensable element of water resources management. This paper’s aim is to model the monthly precipitation in 8 precipitation observation stations in the province of Hamadan, Iran. The effects and role of different feature weights pre-processing methods (Weight by deviation, Weight by PCA, Weight by correlation and Weight by Support Vector Machine) on artificial intelligence modeling were investigated. Deep learning method based on a multi-layer feed-forward artificial neural network that is trained with Stochastic Gradient Descent using back-propagation (DL-SGD) and Convolutional Neural Networks (CNN) modelling were applied. The precipitation of each station is modeled using the precipitation values of the other stations. The best result, among all scenarios, at the Vasaj station according to the DL-SGD method (CC = 0.9845, NS = 0.9543 and RMSE = 10.4169 mm) and at the Varayineh station according to the CNN method (CC = 0.9679, NS = 0.9362 and RMSE = 16.0988 mm) were estimated.

Suggested Citation

  • Mohammad Taghi Sattari & Anca Avram & Halit Apaydin & Oliviu Matei, 2023. "Evaluation of Feature Selection Methods in Estimation of Precipitation Based on Deep Learning Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(15), pages 5871-5891, December.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:15:d:10.1007_s11269-023-03563-4
    DOI: 10.1007/s11269-023-03563-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03563-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03563-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Mahdie Afshari Nia & Fatemeh Panahi & Mohammad Ehteram, 2023. "Convolutional Neural Network- ANN- E (Tanh): A New Deep Learning Model for Predicting Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1785-1810, March.
    2. Vahid Nourani & Mohammad Taghi Sattari & Amir Molajou, 2017. "Threshold-Based Hybrid Data Mining Method for Long-Term Maximum Precipitation Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2645-2658, July.
    3. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    4. Kairong Lin & Jiaqi Zhou & Ruhao Liang & Xiaozhang Hu & Tian Lan & Meixian Liu & Xin Gao & Denghua Yan, 2021. "Identifying rainfall threshold of flash flood using entropy decision approach and hydrological model method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1427-1448, September.
    5. Yeşim Ahi & Çiğdem Coşkun Dilcan & Daniyal Durmuş Köksal & Hüseyin Tevfik Gültaş, 2023. "Reservoir Evaporation Forecasting Based on Climate Change Scenarios Using Artificial Neural Network Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2607-2624, May.
    6. Anca Avram & Oliviu Matei & Camelia Pintea & Carmen Anton, 2020. "Innovative Platform for Designing Hybrid Collaborative & Context-Aware Data Mining Scenarios," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
    7. Xiaoliang Xie & Bingqi Xie & Jiaqi Cheng & Qi Chu & Thomas Dooling, 2021. "A simple Monte Carlo method for estimating the chance of a cyclone impact," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2573-2582, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junhui Wang & Shaowu Li & Jingming Hou & Ye Liu & Wenli Hu & Xueli Shi & Jiaohang Yao, 2024. "Study on Multi-Time Scale Hydrodynamic Model Based on Local Time Stepping Scheme and GPUs and its Application in Urban Inundation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(5), pages 1615-1637, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Taghi Sattari & Anca Avram & Halit Apaydin & Oliviu Matei, 2020. "Soil Temperature Estimation with Meteorological Parameters by Using Tree-Based Hybrid Data Mining Models," Mathematics, MDPI, vol. 8(9), pages 1-21, August.
    2. repec:prg:jnlcfu:v:2022:y:2022:i:1:id:572 is not listed on IDEAS
    3. Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
    4. Andrikopoulos, Andreas & Merika, Anna & Stoupos, Nikolaos, 2025. "The effect of oil prices on the US shipping stock prices: The mediating role of freight rates and economic indicators," Journal of Commodity Markets, Elsevier, vol. 38(C).
    5. Abdullah Addas, 2023. "Understanding the Relationship between Urban Biophysical Composition and Land Surface Temperature in a Hot Desert Megacity (Saudi Arabia)," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    6. Dima, Bogdan & Dima, Ştefana Maria & Ioan, Roxana, 2025. "The short-run impact of investor expectations’ past volatility on current predictions: The case of VIX," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 98(C).
    7. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    8. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    9. Michael Vössing & Niklas Kühl & Matteo Lind & Gerhard Satzger, 2022. "Designing Transparency for Effective Human-AI Collaboration," Information Systems Frontiers, Springer, vol. 24(3), pages 877-895, June.
    10. Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    11. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    12. Jeon, Yunho & Seong, Sihyeon, 2022. "Robust recurrent network model for intermittent time-series forecasting," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1415-1425.
    13. Snyder, Ralph D. & Ord, J. Keith & Koehler, Anne B. & McLaren, Keith R. & Beaumont, Adrian N., 2017. "Forecasting compositional time series: A state space approach," International Journal of Forecasting, Elsevier, vol. 33(2), pages 502-512.
    14. Paulo Júlio & Pedro M. Esperança, 2012. "Evaluating the forecast quality of GDP components: An application to G7," GEE Papers 0047, Gabinete de Estratégia e Estudos, Ministério da Economia, revised Apr 2012.
    15. Rivera, Nilza & Guzmán, Juan Ignacio & Jara, José Joaquín & Lagos, Gustavo, 2021. "Evaluation of econometric models of secondary refined copper supply," Resources Policy, Elsevier, vol. 73(C).
    16. Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021. "Non‐linear mixed‐effects models for time series forecasting of smart meter demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
    17. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Effects on the Riskless Yield Curve with Regime Switching Nelson†Siegel Models," Working Papers 639, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    18. Bayode, Israel A. & Ba-Alawi, Abdulrahman H. & Nguyen, Hai-Tra & Woo, Taeyong & Yoo, ChangKyoo, 2025. "Long-term policy guidance for sustainable energy transition in Nigeria: A deep learning-based peak load forecasting with econo-environmental scenario analysis," Energy, Elsevier, vol. 322(C).
    19. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
    20. Ana Paula Serafini Poeta Silva & Guilherme Arruda Cezar & Edison Sousa Magalhães & Kinath Rupasinghe & Srijita Chandra & Gustavo S Silva & Marcelo Almeida & Bret Crim & Eric Burrough & Phillip Gauger , 2024. "Monitoring emerging pathogens using negative nucleic acid test results from endemic pathogens in pig populations: Application to porcine enteric coronaviruses," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-18, July.
    21. Philippe St-Aubin & Bruno Agard, 2022. "Precision and Reliability of Forecasts Performance Metrics," Forecasting, MDPI, vol. 4(4), pages 1-22, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:15:d:10.1007_s11269-023-03563-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.