IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i8p2855-2869.html
   My bibliography  Save this article

Optimal Operation of Pressurized Irrigation Networks with Several Supply Sources

Author

Listed:
  • I. Fernández García
  • J. Rodríguez Díaz
  • E. Camacho Poyato
  • P. Montesinos

Abstract

The evolution of water distribution systems to pressurized networks has improved water use efficiency, but also significantly increased energy consumption. However, sustainable irrigated agriculture must be characterized by the reasonable and efficient use of both water and energy. Irrigation sectoring where farmers are organized in turns is one of the most effective measures to reduce energy use in irrigation water distribution networks. Previous methodologies developed for branched irrigation networks with one single source node have resulted in considerable energy savings. However, these methodologies were not suitable for networks with several water supply points. In this work, we develop an optimization methodology (WEBSOM) aimed at minimizing energy consumption and based on operational sectoring for networks with several source nodes. Using the NSGA-II multi-objective genetic algorithm, the optimal sectoring operation calendar that minimizes both energy consumption and pressure deficit is obtained. This methodology is tested in the irrigation district of Palos de la Frontera (Huelva, Spain) with three pumping stations, showing that potential annual energy savings of between 20 % and 29 % can be achieved, thus ensuring full pressure requirements in nearly all hydrants, along with the total satisfaction of irrigation requirements. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • I. Fernández García & J. Rodríguez Díaz & E. Camacho Poyato & P. Montesinos, 2013. "Optimal Operation of Pressurized Irrigation Networks with Several Supply Sources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2855-2869, June.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:8:p:2855-2869
    DOI: 10.1007/s11269-013-0319-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-013-0319-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-013-0319-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodriguez-Diaz, J.A. & Camacho-Poyato, E. & Lopez-Luque, R. & Perez-Urrestarazu, L., 2008. "Benchmarking and multivariate data analysis techniques for improving the efficiency of irrigation districts: An application in spain," Agricultural Systems, Elsevier, vol. 96(1-3), pages 250-259, March.
    2. Jacob Chandapillai & K. Sudheer & S. Saseendran, 2012. "Design of Water Distribution Network for Equitable Supply," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 391-406, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernández García, I. & González Perea, R. & Moreno, M.A. & Montesinos, P. & Camacho Poyato, E. & Rodríguez Díaz, J.A., 2017. "Semi-arranged demand as an energy saving measure for pressurized irrigation networks," Agricultural Water Management, Elsevier, vol. 193(C), pages 22-29.
    2. Robles, O. & Playán, E. & Cavero, J. & Zapata, N., 2017. "Assessing low-pressure solid-set sprinkler irrigation in maize," Agricultural Water Management, Elsevier, vol. 191(C), pages 37-49.
    3. Mohammad Masoumi & Bahram Sami Kashkooli & Mohammad Javad Monem & Hossein Montaseri, 2016. "Multi- Objective Optimal Design of on- Demand Pressurized Irrigation Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5051-5063, November.
    4. San Juan, Carlos & Armario Benitez, Julia I., 2020. "Land, water and energy: the crossing of governance," UC3M Working papers. Economics 31463, Universidad Carlos III de Madrid. Departamento de Economía.
    5. I. Fernández García & P. Montesinos & E. Camacho Poyato & J.A. Rodríguez Díaz, 2016. "Incorporating the Irrigation Demand Simultaneity in the Optimal Operation of Pressurized Networks with Several Water Supply Points," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1085-1099, February.
    6. Alonso Campos, J.C. & Jiménez-Bello, M.A. & Martínez Alzamora, F., 2020. "Real-time energy optimization of irrigation scheduling by parallel multi-objective genetic algorithms," Agricultural Water Management, Elsevier, vol. 227(C).
    7. Zapata, N. & Robles, O. & Playán, E. & Paniagua, P. & Romano, C. & Salvador, R. & Montoya, F., 2018. "Low-pressure sprinkler irrigation in maize: Differences in water distribution above and below the crop canopy," Agricultural Water Management, Elsevier, vol. 203(C), pages 353-365.
    8. Lima, F.A & Martínez-Romero, A. & Tarjuelo, J.M. & Córcoles, J.I., 2018. "Model for management of an on-demand irrigation network based on irrigation scheduling of crops to minimize energy use (Part I): Model Development," Agricultural Water Management, Elsevier, vol. 210(C), pages 49-58.
    9. García-Prats, Alberto & Guillem-Picó, Santiago, 2016. "Adaptation of pressurized irrigation networks to new strategies of irrigation management: Energy implications of low discharge and pulsed irrigation," Agricultural Water Management, Elsevier, vol. 169(C), pages 52-60.
    10. García Morillo, J. & McNabola, A. & Camacho, E. & Montesinos, P. & Rodríguez Díaz, J.A., 2018. "Hydro-power energy recovery in pressurized irrigation networks: A case study of an Irrigation District in the South of Spain," Agricultural Water Management, Elsevier, vol. 204(C), pages 17-27.
    11. Carricondo-Antón, J.M. & Jiménez-Bello, M.A. & Manzano Juárez, J. & Royuela Tomas, A. & Sala, A., 2022. "Evaluating the use of meteorological predictions in directly pumped irrigational operations using photovoltaic energy," Agricultural Water Management, Elsevier, vol. 266(C).
    12. Córcoles, J.I. & Tarjuelo, J.M. & Moreno, M.A., 2016. "Pumping station regulation in on-demand irrigation networks using strategic control nodes," Agricultural Water Management, Elsevier, vol. 163(C), pages 48-56.
    13. Jiménez-Bello, M.A. & Royuela, A. & Manzano, J. & Prats, A. García & Martínez-Alzamora, F., 2015. "Methodology to improve water and energy use by proper irrigation scheduling in pressurised networks," Agricultural Water Management, Elsevier, vol. 149(C), pages 91-101.
    14. I. García & P. Montesinos & E. Poyato & J. Díaz, 2014. "Methodology for Detecting Critical Points in Pressurized Irrigation Networks with Multiple Water Supply Points," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1095-1109, March.
    15. R. Khadra & M. A Moreno & H. Awada & N. Lamaddalena, 2016. "Energy and Hydraulic Performance-Based Management of Large-Scale Pressurized Irrigation Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3493-3506, August.
    16. Fouial, Abdelouahid & Fernández García, Irene & Bragalli, Cristiana & Brath, Armando & Lamaddalena, Nicola & Rodríguez Diaz, Juan Antonio, 2017. "Optimal operation of pressurised irrigation distribution systems operating by gravity," Agricultural Water Management, Elsevier, vol. 184(C), pages 77-85.
    17. Juan Córcoles & José Tarjuelo & Pedro Carrión & Miguel Moreno, 2015. "Methodology to Minimize Energy Costs in an On-Demand Irrigation Network Based on Arranged Opening of Hydrants," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3697-3710, August.
    18. R. González Perea & E. Camacho Poyato & P. Montesinos & J. A. Rodríguez Díaz, 2016. "Optimization of Irrigation Scheduling Using Soil Water Balance and Genetic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2815-2830, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Firat Arslan & Juan Ignacio Córcoles Tendero & Juan Antonio Rodríguez Díaz & Demetrio Antonio Zema, 2023. "Comparison of Irrigation Management in Water User Associations of Italy, Spain and Turkey Using Benchmarking Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 55-74, January.
    2. M. J. Naderi & M. S. Pishvaee, 2017. "Robust bi-objective macroscopic municipal water supply network redesign and rehabilitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2689-2711, July.
    3. J. Rodríguez Díaz & P. Montesinos & E. Poyato, 2012. "Detecting Critical Points in On-Demand Irrigation Pressurized Networks – A New Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1693-1713, April.
    4. Raziyeh Farmani & David Butler, 2014. "Implications of Urban Form on Water Distribution Systems Performance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 83-97, January.
    5. Soto-García, M. & Martínez-Alvarez, V. & García-Bastida, P.A. & Alcon, F. & Martin-Gorriz, B., 2013. "Effect of water scarcity and modernisation on the performance of irrigation districts in south-eastern Spain," Agricultural Water Management, Elsevier, vol. 124(C), pages 11-19.
    6. Salgado, Ramiro & Mateos, Luciano, 2021. "Evaluation of different methods of estimating ET for the performance assessment of irrigation schemes," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Tarjuelo, José M. & Rodriguez-Diaz, Juan A. & Abadía, Ricardo & Camacho, Emilio & Rocamora, Carmen & Moreno, Miguel A., 2015. "Efficient water and energy use in irrigation modernization: Lessons from Spanish case studies," Agricultural Water Management, Elsevier, vol. 162(C), pages 67-77.
    8. Moreno-Pérez, M. Fátima & Roldán-Cañas, José, 2013. "Assessment of irrigation water management in the Genil-Cabra (Córdoba, Spain) irrigation district using irrigation indicators," Agricultural Water Management, Elsevier, vol. 120(C), pages 98-106.
    9. van Halsema, Gerardo E. & Vincent, Linden, 2012. "Efficiency and productivity terms for water management: A matter of contextual relativism versus general absolutism," Agricultural Water Management, Elsevier, vol. 108(C), pages 9-15.
    10. Crespo Chacón, Miguel & Rodríguez Díaz, Juan Antonio & García Morillo, Jorge & McNabola, Aonghus, 2020. "Hydropower energy recovery in irrigation networks: Validation of a methodology for flow prediction and pump as turbine selection," Renewable Energy, Elsevier, vol. 147(P1), pages 1728-1738.
    11. Faith M. Muema & Patrick G. Home & James M. Raude, 2018. "Application of Benchmarking and Principal Component Analysis in Measuring Performance of Public Irrigation Schemes in Kenya," Agriculture, MDPI, vol. 8(10), pages 1-20, October.
    12. Shweta Rathi & Rajesh Gupta & Swapnil Kamble & Aabha Sargaonkar, 2016. "Risk Based Analysis for Contamination Event Selection and Optimal Sensor Placement for Intermittent Water Distribution Network Security," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2671-2685, June.
    13. P. Sivakumar & R. Prasad, 2014. "Simulation of Water Distribution Network under Pressure-Deficient Condition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3271-3290, August.
    14. Córcoles, J.I. & de Juan, J.A. & Ortega, J.F. & Tarjuelo, J.M. & Moreno, M.A., 2010. "Management evaluation of Water Users Associations using benchmarking techniques," Agricultural Water Management, Elsevier, vol. 98(1), pages 1-11, December.
    15. Borgia, Cecilia & García-Bolaños, Mariana & Li, Tao & Gómez-Macpherson, Helena & Comas, Jordi & Connor, David & Mateos, Luciano, 2013. "Benchmarking for performance assessment of small and large irrigation schemes along the Senegal Valley in Mauritania," Agricultural Water Management, Elsevier, vol. 121(C), pages 19-26.
    16. Crespo Chacón, Miguel & Rodríguez Díaz, Juan Antonio & García Morillo, Jorge & McNabola, Aonghus, 2020. "Estimating regional potential for micro-hydropower energy recovery in irrigation networks on a large geographical scale," Renewable Energy, Elsevier, vol. 155(C), pages 396-406.
    17. I. García & P. Montesinos & E. Poyato & J. Díaz, 2014. "Methodology for Detecting Critical Points in Pressurized Irrigation Networks with Multiple Water Supply Points," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1095-1109, March.
    18. Sanjeeb Mohapatra & Aabha Sargaonkar & Pawan Labhasetwar, 2014. "Distribution Network Assessment using EPANET for Intermittent and Continuous Water Supply," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3745-3759, September.
    19. Fernández García, I. & Rodríguez Díaz, J.A. & Camacho Poyato, E. & Montesinos, P. & Berbel, J., 2014. "Effects of modernization and medium term perspectives on water and energy use in irrigation districts," Agricultural Systems, Elsevier, vol. 131(C), pages 56-63.
    20. P. Sivakumar & Nikolai B. Gorev & Rajesh Gupta & Tiku T. Tanyimboh & Inna F. Kodzhespirova & C. R. Suribabu, 2020. "Effects of Non-Zero Minimum Pressure Heads in Non-iterative Application of EPANET 2 in Pressure-Dependent Volume-Driven Analysis of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 5047-5059, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:8:p:2855-2869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.