IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i10p3271-3290.html
   My bibliography  Save this article

Simulation of Water Distribution Network under Pressure-Deficient Condition

Author

Listed:
  • P. Sivakumar
  • R. Prasad

Abstract

Pressure deficient condition occurs in the water distribution network (WDN) when the nodal demands are in excess of the design discharge as in the case of fire demand, pump failure, pipe breaks, valve failure etc. It causes either no-flow or partial-flow depending upon the available pressure head at the nodes. To evaluate the nodal flows in such condition, node flow analysis (NFA) gives reasonable results in comparison to demand-driven analysis (DDA) and head-dependent analysis (HDA). The NFA works on the predefined pressure-discharge relationship to evaluate the nodal flows. However, this approach requires human intervention and hence cannot be applied to large WDN. Recently, modified pressure-deficient network algorithm (M-PDNA) has been developed by Babu and Mohan ( 2012 ) for pressure-deficient analysis with EPANET toolkit. However, it requires modification of the source code of EPANET. In this study a relationship with the M-PDNA and node flow analysis (Gupta and Bhave 1996 ) has been investigated and it is found that M-PDNA is the simplified version of NFA. Further, the working principle of M-PDNA has been investigated with suitable examples of Babu and Mohan ( 2012 ). The theoretical basis of M-PDNA has not been investigated in terms of head-discharge relationship. Herein, a head-discharge relationship based on the working principal of M-PDNA is proposed. Some of the toolkits are also readily available to modify demand driven solver of EPANET 2 to suit for the pressure-driven analysis and then it can be used for analysing pressure deficient network. Also in this study, a modification in M-PDNA approach is proposed which does not require the use of EPANET toolkit which is found to be capable of simulating both pressure-sufficient and pressure-deficient conditions in a single hydraulic simulation. Using the proposed approach, pressure-deficient condition is analysed with constant and variable demand pattern. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • P. Sivakumar & R. Prasad, 2014. "Simulation of Water Distribution Network under Pressure-Deficient Condition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3271-3290, August.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:10:p:3271-3290
    DOI: 10.1007/s11269-014-0677-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0677-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0677-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tonino Liserra & Marco Maglionico & Valentina Ciriello & Vittorio Di Federico, 2014. "Evaluation of Reliability Indicators for WDNs with Demand-Driven and Pressure-Driven Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1201-1217, March.
    2. S. Liberatore & G. Sechi, 2009. "Location and Calibration of Valves in Water Distribution Networks Using a Scatter-Search Meta-heuristic Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1479-1495, June.
    3. Nikolai Gorev & Inna Kodzhespirova, 2013. "Noniterative Implementation of Pressure-Dependent Demands Using the Hydraulic Analysis Engine of EPANET 2," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3623-3630, August.
    4. Jacob Chandapillai & K. Sudheer & S. Saseendran, 2012. "Design of Water Distribution Network for Equitable Supply," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 391-406, January.
    5. Calvin Siew & Tiku Tanyimboh, 2012. "Pressure-Dependent EPANET Extension," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1477-1498, April.
    6. Yu. Kovalenko & N. Gorev & I. Kodzhespirova & E. Prokhorov & G. Trapaga, 2014. "Convergence of a Hydraulic Solver with Pressure-Dependent Demands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1013-1031, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P. Sivakumar & Nikolai B. Gorev & Rajesh Gupta & Tiku T. Tanyimboh & Inna F. Kodzhespirova & C. R. Suribabu, 2020. "Effects of Non-Zero Minimum Pressure Heads in Non-iterative Application of EPANET 2 in Pressure-Dependent Volume-Driven Analysis of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 5047-5059, December.
    2. Ram Kailash Prasad, 2021. "Identification of Critical Pipes for Water Distribution Network Rehabilitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5187-5204, December.
    3. K. S. Jinesh Babu, 2021. "Fictitious Component Free - Pressure Deficient Network Algorithm for Water Distribution Network with Variable Minimum and Required Pressure-Heads," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2585-2600, June.
    4. Xiang Xie & Dibo Hou & Xiaoyu Tang & Hongjian Zhang, 2019. "Leakage Identification in Water Distribution Networks with Error Tolerance Capability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1233-1247, February.
    5. Xuan Khoa Bui & Gimoon Jeong & Doosun Kang, 2022. "Adaptive DMA Design and Operation under Multiscenarios in Water Distribution Networks," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    6. E. Pacchin & S. Alvisi & M. Franchini, 2017. "Analysis of Non-Iterative Methods and Proposal of a New One for Pressure-Driven Snapshot Simulations with EPANET," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 75-91, January.
    7. Nikolai B. Gorev & Vyacheslav N. Gorev & Inna F. Kodzhespirova & Igor A. Shedlovsky & P. Sivakumar, 2022. "Dealing with Zero Flows in the Simulation of Water Distribution Networks with Low-Resistance Pipes Using the Global Gradient Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1679-1691, March.
    8. D. Paez & C. R. Suribabu & Y. Filion, 2018. "Method for Extended Period Simulation of Water Distribution Networks with Pressure Driven Demands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2837-2846, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shweta Rathi & Rajesh Gupta & Swapnil Kamble & Aabha Sargaonkar, 2016. "Risk Based Analysis for Contamination Event Selection and Optimal Sensor Placement for Intermittent Water Distribution Network Security," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2671-2685, June.
    2. Carlo Ciaponi & Luigi Franchioli & Enrico Murari & Sergio Papiri, 2015. "Procedure for Defining a Pressure-Outflow Relationship Regarding Indoor Demands in Pressure-Driven Analysis of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 817-832, February.
    3. P. Sivakumar & Nikolai B. Gorev & Rajesh Gupta & Tiku T. Tanyimboh & Inna F. Kodzhespirova & C. R. Suribabu, 2020. "Effects of Non-Zero Minimum Pressure Heads in Non-iterative Application of EPANET 2 in Pressure-Dependent Volume-Driven Analysis of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 5047-5059, December.
    4. Alemtsehay G. Seyoum & Tiku T. Tanyimboh, 2016. "Investigation into the Pressure-Driven Extension of the EPANET Hydraulic Simulation Model for Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5351-5367, November.
    5. D. Paez & C. R. Suribabu & Y. Filion, 2018. "Method for Extended Period Simulation of Water Distribution Networks with Pressure Driven Demands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2837-2846, June.
    6. Mohd Abdy Sayyed & Rajesh Gupta & Tiku Tanyimboh, 2015. "Noniterative Application of EPANET for Pressure Dependent Modelling Of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3227-3242, July.
    7. Sanjeeb Mohapatra & Aabha Sargaonkar & Pawan Labhasetwar, 2014. "Distribution Network Assessment using EPANET for Intermittent and Continuous Water Supply," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3745-3759, September.
    8. M. J. Naderi & M. S. Pishvaee, 2017. "Robust bi-objective macroscopic municipal water supply network redesign and rehabilitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2689-2711, July.
    9. Ghaddar, Bissan & Claeys, Mathieu & Mevissen, Martin & Eck, Bradley J., 2017. "Polynomial optimization for water networks: Global solutions for the valve setting problem," European Journal of Operational Research, Elsevier, vol. 261(2), pages 450-459.
    10. Alemtsehay G. Seyoum & Tiku T. Tanyimboh, 2017. "Integration of Hydraulic and Water Quality Modelling in Distribution Networks: EPANET-PMX," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4485-4503, November.
    11. Jeongwook Choi & Doosun Kang, 2020. "Improved Hydraulic Simulation of Valve Layout Effects on Post-Earthquake Restoration of a Water Distribution Network," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    12. Filippo Pecci & Edo Abraham & Ivan Stoianov, 2017. "Penalty and relaxation methods for the optimal placement and operation of control valves in water supply networks," Computational Optimization and Applications, Springer, vol. 67(1), pages 201-223, May.
    13. Raziyeh Farmani & David Butler, 2014. "Implications of Urban Form on Water Distribution Systems Performance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 83-97, January.
    14. Aditya Gupta & Neeraj Bokde & K. D. Kulat, 2018. "Hybrid Leakage Management for Water Network Using PSF Algorithm and Soft Computing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1133-1151, February.
    15. Calvin Siew & Tiku T. Tanyimboh & Alemtsehay G. Seyoum, 2016. "Penalty-Free Multi-Objective Evolutionary Approach to Optimization of Anytown Water Distribution Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3671-3688, September.
    16. E. Creaco & M. Franchini & S. Alvisi, 2012. "Evaluating Water Demand Shortfalls in Segment Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2301-2321, June.
    17. Gustavo Meirelles & Daniel Manzi & Bruno Brentan & Thaisa Goulart & Edevar Luvizotto, 2017. "Calibration Model for Water Distribution Network Using Pressures Estimated by Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4339-4351, October.
    18. Enrico Creaco & Marco Franchini & Stefano Alvisi, 2010. "Optimal Placement of Isolation Valves in Water Distribution Systems Based on Valve Cost and Weighted Average Demand Shortfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4317-4338, December.
    19. Yu. Kovalenko & N. Gorev & I. Kodzhespirova & E. Prokhorov & G. Trapaga, 2014. "Convergence of a Hydraulic Solver with Pressure-Dependent Demands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1013-1031, March.
    20. Yungyu Chang & Gyewoon Choi & Juhwan Kim & Seongjoon Byeon, 2018. "Energy Cost Optimization for Water Distribution Networks Using Demand Pattern and Storage Facilities," Sustainability, MDPI, vol. 10(4), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:10:p:3271-3290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.