IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v169y2016icp52-60.html
   My bibliography  Save this article

Adaptation of pressurized irrigation networks to new strategies of irrigation management: Energy implications of low discharge and pulsed irrigation

Author

Listed:
  • García-Prats, Alberto
  • Guillem-Picó, Santiago

Abstract

This paper analyzes the consequences of adopting new on-farm irrigation management strategies (low discharge rates, long irrigation times and high frequencies) in an existing on-demand and sectorized pressurized irrigation system in eastern Spain. The sectorized behavior of the network was analyzed using two criteria: (i) the operating sectors obtained in a first stage by arranging the hydrants depending on their altitude respecting the pumping station and (ii) the operating sectors obtained by means of an optimization process. The Simulated Annealing combinatorial metaheuristic optimization technique was employed to find the best solution. Random on-demand patterns were generated using a Montecarlo simulation. The hydraulic requirements of the network were analyzed in every scenario by the Epanet 2.0 engine. The effect on energy consumption, power requirements and energy costs was assessed taking into account the electricity tariff billing structure. It was found that reductions in emitter discharge (qe) and Energy consumption (E)-Energy Cost (EC) savings are not inherently related to each other. Certain amounts of E and EC could be saved when the number of sectors and operating time parameters were properly selected. Pulsed irrigation in the current scenario showed an energy saving potential of 10.67, 6.43 and 6.99% for power capacity, E and EC, respectively.

Suggested Citation

  • García-Prats, Alberto & Guillem-Picó, Santiago, 2016. "Adaptation of pressurized irrigation networks to new strategies of irrigation management: Energy implications of low discharge and pulsed irrigation," Agricultural Water Management, Elsevier, vol. 169(C), pages 52-60.
  • Handle: RePEc:eee:agiwat:v:169:y:2016:i:c:p:52-60
    DOI: 10.1016/j.agwat.2016.02.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416300622
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.02.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. I. Fernández García & J. Rodríguez Díaz & E. Camacho Poyato & P. Montesinos, 2013. "Optimal Operation of Pressurized Irrigation Networks with Several Supply Sources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2855-2869, June.
    2. Tarjuelo, José M. & Rodriguez-Diaz, Juan A. & Abadía, Ricardo & Camacho, Emilio & Rocamora, Carmen & Moreno, Miguel A., 2015. "Efficient water and energy use in irrigation modernization: Lessons from Spanish case studies," Agricultural Water Management, Elsevier, vol. 162(C), pages 67-77.
    3. J. Rodríguez Díaz & P. Montesinos & E. Poyato, 2012. "Detecting Critical Points in On-Demand Irrigation Pressurized Networks – A New Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1693-1713, April.
    4. Phogat, V. & Skewes, Mark A. & Mahadevan, M. & Cox, J.W., 2013. "Evaluation of soil plant system response to pulsed drip irrigation of an almond tree under sustained stress conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 1-11.
    5. Jiménez-Bello, M.A. & Royuela, A. & Manzano, J. & Prats, A. García & Martínez-Alzamora, F., 2015. "Methodology to improve water and energy use by proper irrigation scheduling in pressurised networks," Agricultural Water Management, Elsevier, vol. 149(C), pages 91-101.
    6. Elmaloglou, S. & Diamantopoulos, E., 2007. "Wetting front advance patterns and water losses by deep percolation under the root zone as influenced by pulsed drip irrigation," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 160-163, May.
    7. Mohammad Nabil Elnesr & Abdurrahman Ali Alazba & Assem Ibrahim Zein El-Abedein & Mahmoud Maher El-Adl, 2015. "Evaluating the Effect of Three Water Management Techniques on Tomato Crop," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lima, F.A & Martínez-Romero, A. & Tarjuelo, J.M. & Córcoles, J.I., 2018. "Model for management of an on-demand irrigation network based on irrigation scheduling of crops to minimize energy use (Part I): Model Development," Agricultural Water Management, Elsevier, vol. 210(C), pages 49-58.
    2. Córcoles, J.I. & Tarjuelo, J.M. & Moreno, M.A., 2016. "Pumping station regulation in on-demand irrigation networks using strategic control nodes," Agricultural Water Management, Elsevier, vol. 163(C), pages 48-56.
    3. Juan Córcoles & José Tarjuelo & Pedro Carrión & Miguel Moreno, 2015. "Methodology to Minimize Energy Costs in an On-Demand Irrigation Network Based on Arranged Opening of Hydrants," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3697-3710, August.
    4. Carricondo-Antón, J.M. & Jiménez-Bello, M.A. & Manzano Juárez, J. & Royuela Tomas, A. & Sala, A., 2022. "Evaluating the use of meteorological predictions in directly pumped irrigational operations using photovoltaic energy," Agricultural Water Management, Elsevier, vol. 266(C).
    5. Fouial, Abdelouahid & Fernández García, Irene & Bragalli, Cristiana & Brath, Armando & Lamaddalena, Nicola & Rodríguez Diaz, Juan Antonio, 2017. "Optimal operation of pressurised irrigation distribution systems operating by gravity," Agricultural Water Management, Elsevier, vol. 184(C), pages 77-85.
    6. Fernández García, I. & González Perea, R. & Moreno, M.A. & Montesinos, P. & Camacho Poyato, E. & Rodríguez Díaz, J.A., 2017. "Semi-arranged demand as an energy saving measure for pressurized irrigation networks," Agricultural Water Management, Elsevier, vol. 193(C), pages 22-29.
    7. Mohammad Masoumi & Bahram Sami Kashkooli & Mohammad Javad Monem & Hossein Montaseri, 2016. "Multi- Objective Optimal Design of on- Demand Pressurized Irrigation Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5051-5063, November.
    8. García Morillo, J. & McNabola, A. & Camacho, E. & Montesinos, P. & Rodríguez Díaz, J.A., 2018. "Hydro-power energy recovery in pressurized irrigation networks: A case study of an Irrigation District in the South of Spain," Agricultural Water Management, Elsevier, vol. 204(C), pages 17-27.
    9. San Juan, Carlos & Armario Benitez, Julia I., 2020. "Land, water and energy: the crossing of governance," UC3M Working papers. Economics 31463, Universidad Carlos III de Madrid. Departamento de Economía.
    10. Egea, Gregorio & Diaz-Espejo, Antonio & Fernández, José E., 2016. "Soil moisture dynamics in a hedgerow olive orchard under well-watered and deficit irrigation regimes: Assessment, prediction and scenario analysis," Agricultural Water Management, Elsevier, vol. 164(P2), pages 197-211.
    11. Alonso Campos, J.C. & Jiménez-Bello, M.A. & Martínez Alzamora, F., 2020. "Real-time energy optimization of irrigation scheduling by parallel multi-objective genetic algorithms," Agricultural Water Management, Elsevier, vol. 227(C).
    12. Robles, O. & Playán, E. & Cavero, J. & Zapata, N., 2017. "Assessing low-pressure solid-set sprinkler irrigation in maize," Agricultural Water Management, Elsevier, vol. 191(C), pages 37-49.
    13. Phogat, V. & Skewes, M.A. & Cox, J.W. & Alam, J. & Grigson, G. & Šimůnek, J., 2013. "Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree," Agricultural Water Management, Elsevier, vol. 127(C), pages 74-84.
    14. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    15. Pedro Garcia-Caparros & Juana Isabel Contreras & Rafael Baeza & Maria Luz Segura & Maria Teresa Lao, 2017. "Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    16. Kuklik, Vaclav & Hoang, Thai Dai, 2014. "Soil moisture regimes under point irrigation," Agricultural Water Management, Elsevier, vol. 134(C), pages 42-49.
    17. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    18. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    19. Pizarro, E. & Galleguillos, M. & Barría, P. & Callejas, R., 2022. "Irrigation management or climate change ? Which is more important to cope with water shortage in the production of table grape in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 263(C).
    20. Zhang, Xiaohong & Qi, Yan & Wang, Yanqing & Wu, Jun & Lin, Lili & Peng, Hong & Qi, Hui & Yu, Xiaoyu & Zhang, Yanzong, 2016. "Effect of the tap water supply system on China's economy and energy consumption, and its emissions’ impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 660-671.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:169:y:2016:i:c:p:52-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.