IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v34y2025i3d10.1007_s11749-025-00975-9.html
   My bibliography  Save this article

Tail index estimation for discrete heavy-tailed distributions with application to statistical inference for regular markov chains

Author

Listed:
  • Patrice Bertail

    (Université Paris Nanterre)

  • Stephan Clémençon

    (Institut Polytechnique de Paris)

  • Carlos Fernández

    (Université Paris Nanterre
    Institut Polytechnique de Paris)

Abstract

It is the purpose of this paper to investigate the issue of estimating the regularity index $$\beta >0$$ β > 0 of a discrete heavy-tailed r.v. S, i.e. a r.v. S valued in $$\mathbb {N}^*$$ N ∗ such that $$\mathbb {P}(S>n)=L(n)\cdot n^{-\beta }$$ P ( S > n ) = L ( n ) · n - β for all $$n\ge 1$$ n ≥ 1 , where $$L:\mathbb {R}^*_+\rightarrow \mathbb {R}_+$$ L : R + ∗ → R + is a slowly varying function. Such discrete probability laws, referred to as generalized Zipf’s laws sometimes, are commonly used to model rank-size distributions after a preliminary range segmentation in a wide variety of areas such as e.g. quantitative linguistics, social sciences or information theory. As a first go, we consider the situation where inference is based on independent copies $$S_1,\; \ldots ,\; S_n$$ S 1 , … , S n of the generic variable S. The estimator $$\widehat{\beta }$$ β ^ we propose can be derived by means of a suitable reformulation of the regularly varying condition, replacing S’s survivor function by its empirical counterpart. Under mild assumptions, a non-asymptotic bound for the deviation between $$\widehat{\beta }$$ β ^ and $$\beta $$ β is established, as well as limit results (consistency and asymptotic normality). Beyond the i.i.d. case, the inference method proposed is extended to the estimation of the regularity index of a regenerative $$\beta $$ β -null-recurrent Markov chain. Since the parameter $$\beta $$ β can be then viewed as the tail index of the (regularly varying) distribution of the return time of the chain X to any (pseudo-) regenerative set, in this case, the estimator is constructed from the successive regeneration times. Because the durations between consecutive regeneration times are asymptotically independent, we can prove that the consistency of the estimator promoted is preserved. In addition to the theoretical analysis carried out, simulation results provide empirical evidence of the relevance of the inference technique proposed.

Suggested Citation

  • Patrice Bertail & Stephan Clémençon & Carlos Fernández, 2025. "Tail index estimation for discrete heavy-tailed distributions with application to statistical inference for regular markov chains," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 34(3), pages 691-713, September.
  • Handle: RePEc:spr:testjl:v:34:y:2025:i:3:d:10.1007_s11749-025-00975-9
    DOI: 10.1007/s11749-025-00975-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-025-00975-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-025-00975-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Paul Doukhan & Patrice Bertail & Philippe Soulier, 2006. "Dependence in Probability and Statistics," Post-Print hal-00268232, HAL.
    2. Mihyun Kim & Piotr Kokoszka, 2023. "Asymptotic and finite sample properties of Hill-type estimators in the presence of errors in observations," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 35(1), pages 1-18, January.
    3. Paul Doukhan & Patrice Bertail & Philippe Soulier, 2006. "Dependence in Probability and Statistics," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00268232, HAL.
    4. M. Goldstein & S. Morris & G. Yen, 2004. "Problems with fitting to the power-law distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 41(2), pages 255-258, September.
    5. Mihyun Kim & Piotr Kokoszka, 2020. "Consistency of the Hill Estimator for Time Series Observed with Measurement Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(3), pages 421-435, May.
    6. Gao, Jiti & Tjøstheim, Dag & Yin, Jiying, 2013. "Estimation in threshold autoregressive models with a stationary and a unit root regime," Journal of Econometrics, Elsevier, vol. 172(1), pages 1-13.
    7. Myklebust, Terje & Karlsen, Hans Arnfinn & Tjøstheim, Dag, 2012. "Null Recurrent Unit Root Processes," Econometric Theory, Cambridge University Press, vol. 28(1), pages 1-41, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biqing Cai & Dag Tjøstheim, 2015. "Nonparametric Regression Estimation for Multivariate Null Recurrent Processes," Econometrics, MDPI, vol. 3(2), pages 1-24, April.
    2. Bravo, Francesco & Li, Degui & Tjøstheim, Dag, 2021. "Robust nonlinear regression estimation in null recurrent time series," Journal of Econometrics, Elsevier, vol. 224(2), pages 416-438.
    3. Bertail, Patrice & Clemencon, Stephan, 2008. "Approximate regenerative-block bootstrap for Markov chains," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2739-2756, January.
    4. Lahiri, S.N. & Robinson, Peter M., 2016. "Central limit theorems for long range dependent spatial linear processes," LSE Research Online Documents on Economics 65331, London School of Economics and Political Science, LSE Library.
    5. Paul Doukhan & Jean-David Fermanian & Gabriel Lang, 2009. "An empirical central limit theorem with applications to copulas under weak dependence," Statistical Inference for Stochastic Processes, Springer, vol. 12(1), pages 65-87, February.
    6. Brunella Bonaccorso & Giuseppe T. Aronica, 2016. "Estimating Temporal Changes in Extreme Rainfall in Sicily Region (Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5651-5670, December.
    7. Thomas Chuffart, 2015. "Selection Criteria in Regime Switching Conditional Volatility Models," Econometrics, MDPI, vol. 3(2), pages 1-28, May.
    8. Anh, V.V. & Leonenko, N.N. & Sakhno, L.M., 2007. "Statistical inference using higher-order information," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 706-742, April.
    9. Li, Degui & Li, Runze, 2016. "Local composite quantile regression smoothing for Harris recurrent Markov processes," Journal of Econometrics, Elsevier, vol. 194(1), pages 44-56.
    10. Erhardt, Robert J. & Smith, Richard L., 2012. "Approximate Bayesian computing for spatial extremes," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1468-1481.
    11. Gürtler, Marc & Kreiss, Jens-Peter & Rauh, Ronald, 2009. "A non-stationary approach for financial returns with nonparametric heteroscedasticity," Working Papers IF31V2, Technische Universität Braunschweig, Institute of Finance.
    12. Shulin Zhang & Qian M. Zhou & Huazhen Lin, 2021. "Goodness-of-fit test of copula functions for semi-parametric univariate time series models," Statistical Papers, Springer, vol. 62(4), pages 1697-1721, August.
    13. Stoyan V. Stoyanov & Svetlozar T. Rachev & Stefan Mittnik & Frank J. Fabozzi, 2019. "Pricing Derivatives In Hermite Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-27, September.
    14. Lee, Xing Ju & Hainy, Markus & McKeone, James P. & Drovandi, Christopher C. & Pettitt, Anthony N., 2018. "ABC model selection for spatial extremes models applied to South Australian maximum temperature data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 128-144.
    15. Inass Soukarieh & Salim Bouzebda, 2022. "Exchangeably Weighted Bootstraps of General Markov U -Process," Mathematics, MDPI, vol. 10(20), pages 1-42, October.
    16. Francq, Christian & Zakoïan, Jean-Michel, 2010. "Inconsistency of the MLE and inference based on weighted LS for LARCH models," Journal of Econometrics, Elsevier, vol. 159(1), pages 151-165, November.
    17. Hsieh, Meng-Chen & Hurvich, Clifford M. & Soulier, Philippe, 2007. "Asymptotics for duration-driven long range dependent processes," Journal of Econometrics, Elsevier, vol. 141(2), pages 913-949, December.
    18. Biqing Cai & Jiti Gao & Dag Tjøstheim, 2017. "A New Class of Bivariate Threshold Cointegration Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 288-305, April.
    19. Nikolai Leonenko & Andriy Olenko, 2013. "Tauberian and Abelian Theorems for Long-range Dependent Random Fields," Methodology and Computing in Applied Probability, Springer, vol. 15(4), pages 715-742, December.
    20. Beran, Jan & Ghosh, Sucharita & Schell, Dieter, 2009. "On least squares estimation for long-memory lattice processes," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2178-2194, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:34:y:2025:i:3:d:10.1007_s11749-025-00975-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.