IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v34y2025i1d10.1007_s11749-024-00954-6.html
   My bibliography  Save this article

Statistical properties of partially observed integrated functional depths

Author

Listed:
  • Antonio Elías

    (Universidad de Málaga)

  • Stanislav Nagy

    (Charles University)

Abstract

Integrated functional depths (IFDs) present a versatile toolbox of methods introducing notions of ordering, quantiles, and rankings into a functional data analysis context. They provide fundamental tools for nonparametric inference of infinite-dimensional data. Recently, the literature has extended IFDs to address the challenges posed by partial observability of functional data, commonly encountered in practice. That resulted in the development of partially observed integrated functional depths (POIFDs). POIFDs have demonstrated good empirical results in simulated experiments and real problems. However, there are still no theoretical results in line with the state of the art of IFDs. This article addresses this gap by providing theoretical support for POIFDs, including (i) uniform consistency of their sample versions, (ii) weak continuity with respect to the underlying probability measure, and (iii) uniform consistency for discretely observed functional data. Finally, we present a sensitivity analysis that evaluates how our theoretical results are affected by violations of the main assumptions.

Suggested Citation

  • Antonio Elías & Stanislav Nagy, 2025. "Statistical properties of partially observed integrated functional depths," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 34(1), pages 125-150, March.
  • Handle: RePEc:spr:testjl:v:34:y:2025:i:1:d:10.1007_s11749-024-00954-6
    DOI: 10.1007/s11749-024-00954-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-024-00954-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-024-00954-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nagy, Stanislav & Ferraty, Frédéric, 2019. "Data depth for measurable noisy random functions," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 95-114.
    2. López-Pintado, Sara & Romo, Juan, 2009. "On the Concept of Depth for Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 718-734.
    3. Molchanov,Ilya & Molinari,Francesca, 2018. "Random Sets in Econometrics," Cambridge Books, Cambridge University Press, number 9781107121201, Enero.
    4. Nagy, Stanislav & Gijbels, Irène & Hlubinka, Daniel, 2016. "Weak convergence of discretely observed functional data with applications," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 46-62.
    5. Nagy, Stanislav, 2017. "Integrated depth for measurable functions and sets," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 165-170.
    6. J. Goldsmith & S. Greven & C. Crainiceanu, 2013. "Corrected Confidence Bands for Functional Data Using Principal Components," Biometrics, The International Biometric Society, vol. 69(1), pages 41-51, March.
    7. Biau, Gérard & Cadre, Benoît & Pelletier, Bruno, 2008. "Exact rates in density support estimation," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2185-2207, November.
    8. Antonio Elías & Raúl Jiménez & Han Lin Shang, 2023. "Depth-based reconstruction method for incomplete functional data," Computational Statistics, Springer, vol. 38(3), pages 1507-1535, September.
    9. Ricardo Fraiman & Graciela Muniz, 2001. "Trimmed means for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 419-440, December.
    10. Cuevas, Antonio & Fraiman, Ricardo, 2009. "On depth measures and dual statistics. A methodology for dealing with general data," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 753-766, April.
    11. Carlo Sguera & Sara López-Pintado, 2021. "A notion of depth for sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 630-649, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nagy, Stanislav & Ferraty, Frédéric, 2019. "Data depth for measurable noisy random functions," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 95-114.
    2. Dai, Wenlin & Genton, Marc G., 2019. "Directional outlyingness for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 50-65.
    3. Carlo Sguera & Pedro Galeano & Rosa Lillo, 2014. "Spatial depth-based classification for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 725-750, December.
    4. Nieto-Reyes, Alicia & Battey, Heather, 2021. "A topologically valid construction of depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    5. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    6. Fraiman, Ricardo & Pateiro-López, Beatriz, 2012. "Quantiles for finite and infinite dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 108(C), pages 1-14.
    7. Anirvan Chakraborty & Probal Chaudhuri, 2014. "On data depth in infinite dimensional spaces," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 303-324, April.
    8. Gijbels, Irène & Nagy, Stanislav, 2015. "Consistency of non-integrated depths for functional data," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 259-282.
    9. Carlo Sguera & Sara López-Pintado, 2021. "A notion of depth for sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 630-649, September.
    10. A. Cholaquidis & R. Fraiman & L. Moreno, 2023. "Level sets of depth measures in abstract spaces," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 942-957, September.
    11. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    12. Flores Díaz, Ramón Jesús & Lillo Rodríguez, Rosa Elvira & Romo, Juan, 2014. "Homogeneity test for functional data based on depth measures," DES - Working Papers. Statistics and Econometrics. WS ws140101, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Miguel Flores & Salvador Naya & Rubén Fernández-Casal & Sonia Zaragoza & Paula Raña & Javier Tarrío-Saavedra, 2020. "Constructing a Control Chart Using Functional Data," Mathematics, MDPI, vol. 8(1), pages 1-26, January.
    14. Alba M. Franco-Pereira & Rosa E. Lillo, 2020. "Rank tests for functional data based on the epigraph, the hypograph and associated graphical representations," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 651-676, September.
    15. Serfling, Robert & Wijesuriya, Uditha, 2017. "Depth-based nonparametric description of functional data, with emphasis on use of spatial depth," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 24-45.
    16. Antonio Elías & Raúl Jiménez & Han Lin Shang, 2023. "Depth-based reconstruction method for incomplete functional data," Computational Statistics, Springer, vol. 38(3), pages 1507-1535, September.
    17. Dai, Wenlin & Mrkvička, Tomáš & Sun, Ying & Genton, Marc G., 2020. "Functional outlier detection and taxonomy by sequential transformations," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    18. Xu, Xiuqin & Chen, Ying & Goude, Yannig & Yao, Qiwei, 2021. "Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression," Applied Energy, Elsevier, vol. 301(C).
    19. Valencia García, Dalia Jazmin & Lillo Rodríguez, Rosa Elvira & Romo, Juan, 2013. "Spearman coefficient for functions," DES - Working Papers. Statistics and Econometrics. WS ws133329, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Cleveland, Jason & Zhao, Weilong & Wu, Wei, 2018. "Robust template estimation for functional data with phase variability using band depth," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 10-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:34:y:2025:i:1:d:10.1007_s11749-024-00954-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.