IDEAS home Printed from https://ideas.repec.org/b/cup/cbooks/9781107121201.html
   My bibliography  Save this book

Random Sets in Econometrics

Author

Listed:
  • Molchanov,Ilya
  • Molinari,Francesca

Abstract

Random set theory is a fascinating branch of mathematics that amalgamates techniques from topology, convex geometry, and probability theory. Social scientists routinely conduct empirical work with data and modelling assumptions that reveal a set to which the parameter of interest belongs, but not its exact value. Random set theory provides a coherent mathematical framework to conduct identification analysis and statistical inference in this setting and has become a fundamental tool in econometrics and finance. This is the first book dedicated to the use of the theory in econometrics, written to be accessible for readers without a background in pure mathematics. Molchanov and Molinari define the basics of the theory and illustrate the mathematical concepts by their application in the analysis of econometric models. The book includes sets of exercises to accompany each chapter as well as examples to help readers apply the theory effectively.

Suggested Citation

  • Molchanov,Ilya & Molinari,Francesca, 2018. "Random Sets in Econometrics," Cambridge Books, Cambridge University Press, number 9781107121201.
  • Handle: RePEc:cup:cbooks:9781107121201
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colubi, Ana & Ramos-Guajardo, Ana Belén, 2023. "Fuzzy sets and (fuzzy) random sets in Econometrics and Statistics," Econometrics and Statistics, Elsevier, vol. 26(C), pages 84-98.
    2. Raffaella Giacomini & Toru Kitagawa, 2021. "Robust Bayesian Inference for Set‐Identified Models," Econometrica, Econometric Society, vol. 89(4), pages 1519-1556, July.
    3. Hiroaki Kaido & Yi Zhang, 2019. "Robust Likelihood Ratio Tests for Incomplete Economic Models," Papers 1910.04610, arXiv.org, revised Dec 2019.
    4. Vira Semenova, 2023. "Aggregated Intersection Bounds and Aggregated Minimax Values," Papers 2303.00982, arXiv.org, revised Jun 2024.
    5. S. Settepanella & A. Terni & M. Franciosi & L. Li, 2022. "The robustness of the generalized Gini index," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(2), pages 521-539, December.
    6. Levon Barseghyan & Maura Coughlin & Francesca Molinari & Joshua C. Teitelbaum, 2021. "Heterogeneous Choice Sets and Preferences," Econometrica, Econometric Society, vol. 89(5), pages 2015-2048, September.
    7. Christian Bontemps & Cristina Gualdani & Kevin Remmy, 2023. "Price Competition and Endogenous Product Choice in Networks: Evidence From the US Airline Industry," CRC TR 224 Discussion Paper Series crctr224_2023_400, University of Bonn and University of Mannheim, Germany.
    8. Marc-Arthur Diaye & Gleb Koshevoy & Ilya Molchanov, 2019. "Lift expectations of random sets [Augmenter les attentes concernant les ensembles aléatoires]," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03897964, HAL.
    9. Chesher, Andrew & Kim, Dongwoo & Rosen, Adam M., 2023. "IV methods for Tobit models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1700-1724.
    10. Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
    11. Martin Dumav & Maxwell B. Stinchcombe, 2021. "The multiple priors of the open-minded decision maker," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 663-692, March.
    12. Diaye, Marc-Arthur & Koshevoy, Gleb A. & Molchanov, Ilya, 2019. "Lift expectations of random sets," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 110-117.
    13. Andrew Chesher & Adam Rosen, 2018. "Generalized instrumental variable models, methods, and applications," CeMMAP working papers CWP43/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Ilya Molchanov & Anja Mühlemann, 2021. "Nonlinear expectations of random sets," Finance and Stochastics, Springer, vol. 25(1), pages 5-41, January.
    15. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    16. Ilya Molchanov & Anja Muhlemann, 2019. "Nonlinear expectations of random sets," Papers 1903.04901, arXiv.org.
    17. Antonio Avilés López & José Miguel Zapata García, 2020. "Boolean Valued Representation of Random Sets and Markov Kernels with Application to Large Deviations," Mathematics, MDPI, vol. 8(10), pages 1-23, October.
    18. Undral Byambadalai, 2022. "Identification and Inference for Welfare Gains without Unconfoundedness," Papers 2207.04314, arXiv.org.
    19. Marc-Arthur Diaye & Gleb Koshevoy & Ilya Molchanov, 2019. "Lift expectations of random sets [Augmenter les attentes concernant les ensembles aléatoires]," Post-Print hal-03897964, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:cbooks:9781107121201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ruth Austin (email available below). General contact details of provider: https://www.cambridge.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.