IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v63y2022i4d10.1007_s00362-021-01272-x.html
   My bibliography  Save this article

Truncating the exponential with a uniform distribution

Author

Listed:
  • Rafael Weißbach

    (University of Rostock)

  • Dominik Wied

    (University of Cologne)

Abstract

For a sample of Exponentially distributed durations we aim at point estimation and a confidence interval for its parameter. A duration is only observed if it has ended within a certain time interval, determined by a Uniform distribution. Hence, the data is a truncated empirical process that we can approximate by a Poisson process when only a small portion of the sample is observed, as is the case for our applications. We derive the likelihood from standard arguments for point processes, acknowledging the size of the latent sample as the second parameter, and derive the maximum likelihood estimator for both. Consistency and asymptotic normality of the estimator for the Exponential parameter are derived from standard results on M-estimation. We compare the design with a simple random sample assumption for the observed durations. Theoretically, the derivative of the log-likelihood is less steep in the truncation-design for small parameter values, indicating a larger computational effort for root finding and a larger standard error. In applications from the social and economic sciences and in simulations, we indeed, find a moderately increased standard error when acknowledging truncation.

Suggested Citation

  • Rafael Weißbach & Dominik Wied, 2022. "Truncating the exponential with a uniform distribution," Statistical Papers, Springer, vol. 63(4), pages 1247-1270, August.
  • Handle: RePEc:spr:stpapr:v:63:y:2022:i:4:d:10.1007_s00362-021-01272-x
    DOI: 10.1007/s00362-021-01272-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-021-01272-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-021-01272-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rafael Weißbach & Lucas Radloff, 2020. "Consistency for the negative binomial regression with fixed covariate," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(5), pages 627-641, July.
    2. Pao-sheng Shen, 2010. "Nonparametric analysis of doubly truncated data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(5), pages 835-853, October.
    3. Takeshi Emura & Ya-Hsuan Hu & Yoshihiko Konno, 2017. "Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation," Statistical Papers, Springer, vol. 58(3), pages 877-909, September.
    4. Rafael Weißbach & Wladislaw Poniatowski & Walter Krämer, 2013. "Nearest neighbor hazard estimation with left-truncated duration data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(1), pages 33-47, January.
    5. Weißbach, Rafael & Walter, Ronja, 2010. "A likelihood ratio test for stationarity of rating transitions," Journal of Econometrics, Elsevier, vol. 155(2), pages 188-194, April.
    6. Latifa Adjoudj & Abdelkader Tatachak, 2019. "Conditional Quantile Estimation for Truncated and Associated Data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(18), pages 4598-4641, September.
    7. Rothe, Christoph & Wied, Dominik, 2020. "Estimating derivatives of function-valued parameters in a class of moment condition models," Journal of Econometrics, Elsevier, vol. 217(1), pages 1-19.
    8. Bücker, Michael & van Kampen, Maarten & Krämer, Walter, 2013. "Reject inference in consumer credit scoring with nonignorable missing data," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 1040-1045.
    9. Rafael Weißbach & Patrick Tschiersch & Claudia Lawrenz, 2009. "Testing time-homogeneity of rating transitions after origination of debt," Empirical Economics, Springer, vol. 36(3), pages 575-596, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafael Weißbach & Yongdai Kim & Achim Dörre & Anne Fink & Gabriele Doblhammer, 2021. "Left-censored dementia incidences in estimating cohort effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 38-63, January.
    2. Weißbach, Rafael & Mollenhauer, Thomas, 2011. "Modelling Rating Transitions," VfS Annual Conference 2011 (Frankfurt, Main): The Order of the World Economy - Lessons from the Crisis 48698, Verein für Socialpolitik / German Economic Association.
    3. Rafael Weißbach & Wladislaw Poniatowski & Walter Krämer, 2013. "Nearest neighbor hazard estimation with left-truncated duration data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(1), pages 33-47, January.
    4. Achim Dörre & Chung-Yan Huang & Yi-Kuan Tseng & Takeshi Emura, 2021. "Likelihood-based analysis of doubly-truncated data under the location-scale and AFT model," Computational Statistics, Springer, vol. 36(1), pages 375-408, March.
    5. Shen, Pao-sheng & Hsu, Huichen, 2020. "Conditional maximum likelihood estimation for semiparametric transformation models with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    6. Voß, Sebastian & Weißbach, Rafael, 2014. "A score-test on measurement errors in rating transition times," Journal of Econometrics, Elsevier, vol. 180(1), pages 16-29.
    7. Weißbach, Rafael & Strohecker, Fynn, 2016. "Modeling rating transitions with instantaneous default," Economics Letters, Elsevier, vol. 145(C), pages 38-40.
    8. Shaomin Li & Haoyu Wei & Xiaoyu Lei, 2021. "Heterogeneous Overdispersed Count Data Regressions via Double Penalized Estimations," Papers 2110.03552, arXiv.org, revised Feb 2022.
    9. Takeshi Emura & Ya-Hsuan Hu & Yoshihiko Konno, 2017. "Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation," Statistical Papers, Springer, vol. 58(3), pages 877-909, September.
    10. Zhiyong Li & Xinyi Hu & Ke Li & Fanyin Zhou & Feng Shen, 2020. "Inferring the outcomes of rejected loans: an application of semisupervised clustering," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 631-654, February.
    11. Rafael Weißbach & Lucas Radloff, 2020. "Consistency for the negative binomial regression with fixed covariate," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(5), pages 627-641, July.
    12. Michael Bucker & Gero Szepannek & Alicja Gosiewska & Przemyslaw Biecek, 2020. "Transparency, Auditability and eXplainability of Machine Learning Models in Credit Scoring," Papers 2009.13384, arXiv.org.
    13. Lior Rennert & Sharon X. Xie, 2022. "Cox regression model under dependent truncation," Biometrics, The International Biometric Society, vol. 78(2), pages 460-473, June.
    14. Jonas Meier, 2020. "Multivariate Distribution Regression," Diskussionsschriften dp2023, Universitaet Bern, Departement Volkswirtschaft.
    15. Moreira, C. & de Uña-Álvarez, J. & Meira-Machado, L., 2016. "Nonparametric regression with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 294-307.
    16. Ha-Thu Nguyen, 2016. "Reject inference in application scorecards: evidence from France," EconomiX Working Papers 2016-10, University of Paris Nanterre, EconomiX.
    17. Dong-Her Shih & Ting-Wei Wu & Po-Yuan Shih & Nai-An Lu & Ming-Hung Shih, 2022. "A Framework of Global Credit-Scoring Modeling Using Outlier Detection and Machine Learning in a P2P Lending Platform," Mathematics, MDPI, vol. 10(13), pages 1-13, June.
    18. Pedro Lencastre & Frank Raischel & Pedro G. Lind & Tim Rogers, 2014. "Are credit ratings time-homogeneous and Markov?," Papers 1403.8018, arXiv.org, revised Oct 2014.
    19. Ha Thu Nguyen, 2016. "Reject inference in application scorecards: evidence from France," Working Papers hal-04141601, HAL.
    20. Kavita Sardana, 2021. "Double truncation in choice-based sample: An application of on-site survey sample," Economics Bulletin, AccessEcon, vol. 41(2), pages 781-787.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:63:y:2022:i:4:d:10.1007_s00362-021-01272-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.