IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v203y2025ics0167947324001749.html
   My bibliography  Save this article

Cox regression model with doubly truncated and interval-censored data

Author

Listed:
  • Shen, Pao-sheng

Abstract

Interval sampling is an efficient sampling scheme used in epidemiological studies. Doubly truncated (DT) data arise under this sampling scheme when the failure time can be observed exactly. In practice, the failure time may not be observed and might be recorded only within time intervals, leading to doubly truncated and interval censored (DTIC) data. This article considers regression analysis of DTIC data under the Cox proportional hazards (PH) model and develops the conditional maximum likelihood estimators (cMLEs) for the regression parameters and baseline cumulative hazard function of models. The cMLEs are shown to be consistent and asymptotically normal. Simulation results indicate that the cMLEs perform well for samples of moderate size.

Suggested Citation

  • Shen, Pao-sheng, 2025. "Cox regression model with doubly truncated and interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:csdana:v:203:y:2025:i:c:s0167947324001749
    DOI: 10.1016/j.csda.2024.108090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324001749
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.108090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moreira, C. & de Uña-Álvarez, J. & Meira-Machado, L., 2016. "Nonparametric regression with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 294-307.
    2. Moreira, Carla & Van Keilegom, Ingrid, 2013. "Bandwidth selection for kernel density estimation with doubly truncated data," LIDAM Reprints ISBA 2013018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Pao-Sheng Shen, 2014. "A Generalization of Turnbull’s Estimator for Interval-Censored and Doubly Truncated Data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 43(14), pages 2958-2972, July.
    4. Pao-sheng Shen, 2013. "Regression analysis of interval censored and doubly truncated data with linear transformation models," Computational Statistics, Springer, vol. 28(2), pages 581-596, April.
    5. Lior Rennert & Sharon X. Xie, 2018. "Cox regression model with doubly truncated data," Biometrics, The International Biometric Society, vol. 74(2), pages 725-733, June.
    6. Hong Zhu & Mei-Cheng Wang, 2014. "Nonparametric inference on bivariate survival data with interval sampling: association estimation and testing," Biometrika, Biometrika Trust, vol. 101(3), pages 519-533.
    7. Donglin Zeng & Lu Mao & D. Y. Lin, 2016. "Maximum likelihood estimation for semiparametric transformation models with interval-censored data," Biometrika, Biometrika Trust, vol. 103(2), pages 253-271.
    8. Shen, Pao-sheng & Hsu, Huichen, 2020. "Conditional maximum likelihood estimation for semiparametric transformation models with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    9. Pao-sheng Shen, 2010. "Nonparametric analysis of doubly truncated data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(5), pages 835-853, October.
    10. Carla Moreira & Jacobo Uña-Álvarez & Ingrid Keilegom, 2014. "Goodness-of-fit tests for a semiparametric model under random double truncation," Computational Statistics, Springer, vol. 29(5), pages 1365-1379, October.
    11. Moreira, C. & Van Keilegom, I., 2013. "Bandwidth selection for kernel density estimation with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 107-123.
    12. Takeshi Emura & Ya-Hsuan Hu & Yoshihiko Konno, 2017. "Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation," Statistical Papers, Springer, vol. 58(3), pages 877-909, September.
    13. Donglin Zeng & D. Y. Lin, 2006. "Efficient estimation of semiparametric transformation models for counting processes," Biometrika, Biometrika Trust, vol. 93(3), pages 627-640, September.
    14. Wei Pan & Rick Chappell, 2002. "Estimation in the Cox Proportional Hazards Model with Left-Truncated and Interval-Censored Data," Biometrics, The International Biometric Society, vol. 58(1), pages 64-70, March.
    15. Lior Rennert & Sharon X. Xie, 2022. "Cox regression model under dependent truncation," Biometrics, The International Biometric Society, vol. 78(2), pages 460-473, June.
    16. Kani Chen, 2002. "Semiparametric analysis of transformation models with censored data," Biometrika, Biometrika Trust, vol. 89(3), pages 659-668, August.
    17. Anton Schick & Qiqing Yu, 2000. "Consistency of the GMLE with Mixed Case Interval‐Censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(1), pages 45-55, March.
    18. Carla Moreira & Jacobo de Uña-Álvarez, 2010. "Bootstrapping the NPMLE for doubly truncated data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(5), pages 567-583.
    19. Michael G. Hudgens & Glen A. Satten & Ira M. Longini, 2001. "Nonparametric Maximum Likelihood Estimation for Competing Risks Survival Data Subject to Interval Censoring and Truncation," Biometrics, The International Biometric Society, vol. 57(1), pages 74-80, March.
    20. Michael G. Hudgens, 2005. "On nonparametric maximum likelihood estimation with interval censoring and left truncation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(4), pages 573-587, September.
    21. Ya-Hsuan Hu & Takeshi Emura, 2015. "Maximum likelihood estimation for a special exponential family under random double-truncation," Computational Statistics, Springer, vol. 30(4), pages 1199-1229, December.
    22. Micha Mandel & Jacobo de Uña†à lvarez & David K. Simon & Rebecca A. Betensky, 2018. "Inverse probability weighted Cox regression for doubly truncated data," Biometrics, The International Biometric Society, vol. 74(2), pages 481-487, June.
    23. Moreira, Carla & de Una-Alvarez, Jacobo & Van Keilegom, Ingrid, 2014. "Goodness-of-fit tests for a semiparametric model under random double truncation," LIDAM Reprints ISBA 2014039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    24. Hong Zhu & Mei-Cheng Wang, 2012. "Analysing bivariate survival data with interval sampling and application to cancer epidemiology," Biometrika, Biometrika Trust, vol. 99(2), pages 345-361.
    25. Pao-sheng Shen & Yi Liu, 2019. "Pseudo maximum likelihood estimation for the Cox model with doubly truncated data," Statistical Papers, Springer, vol. 60(4), pages 1207-1224, August.
    26. Moreira, Carla & de Uña-Álvarez, Jacobo & Crujeiras, Rosa M., 2010. "DTDA: An R Package to Analyze Randomly Truncated Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 37(i07).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pao-sheng Shen, 2025. "Nonparametric estimation of the cumulative incidence function for doubly-truncated and interval-censored competing risks data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 31(1), pages 76-101, January.
    2. Shen, Pao-sheng & Hsu, Huichen, 2020. "Conditional maximum likelihood estimation for semiparametric transformation models with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    3. Pao-sheng Shen & Yi Liu, 2019. "Pseudo maximum likelihood estimation for the Cox model with doubly truncated data," Statistical Papers, Springer, vol. 60(4), pages 1207-1224, August.
    4. Achim Dörre & Chung-Yan Huang & Yi-Kuan Tseng & Takeshi Emura, 2021. "Likelihood-based analysis of doubly-truncated data under the location-scale and AFT model," Computational Statistics, Springer, vol. 36(1), pages 375-408, March.
    5. Takeshi Emura & Ya-Hsuan Hu & Yoshihiko Konno, 2017. "Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation," Statistical Papers, Springer, vol. 58(3), pages 877-909, September.
    6. Lior Rennert & Sharon X. Xie, 2022. "Cox regression model under dependent truncation," Biometrics, The International Biometric Society, vol. 78(2), pages 460-473, June.
    7. Ya-Hsuan Hu & Takeshi Emura, 2015. "Maximum likelihood estimation for a special exponential family under random double-truncation," Computational Statistics, Springer, vol. 30(4), pages 1199-1229, December.
    8. Micha Mandel & Jacobo de Uña†à lvarez & David K. Simon & Rebecca A. Betensky, 2018. "Inverse probability weighted Cox regression for doubly truncated data," Biometrics, The International Biometric Society, vol. 74(2), pages 481-487, June.
    9. Carla Moreira & Jacobo de Uña-Álvarez & Roel Braekers, 2021. "Nonparametric estimation of a distribution function from doubly truncated data under dependence," Computational Statistics, Springer, vol. 36(3), pages 1693-1720, September.
    10. Kavita Sardana, 2021. "Double truncation in choice-based sample: An application of on-site survey sample," Economics Bulletin, AccessEcon, vol. 41(2), pages 781-787.
    11. Lu Mao & Dan-Yu Lin & Donglin Zeng, 2017. "Semiparametric regression analysis of interval-censored competing risks data," Biometrics, The International Biometric Society, vol. 73(3), pages 857-865, September.
    12. Xi Ning & Yinghao Pan & Yanqing Sun & Peter B. Gilbert, 2023. "A semiparametric Cox–Aalen transformation model with censored data," Biometrics, The International Biometric Society, vol. 79(4), pages 3111-3125, December.
    13. Fei Gao & Kwun Chuen Gary Chan, 2019. "Semiparametric regression analysis of length‐biased interval‐censored data," Biometrics, The International Biometric Society, vol. 75(1), pages 121-132, March.
    14. Lu Mao & D. Y. Lin, 2017. "Efficient estimation of semiparametric transformation models for the cumulative incidence of competing risks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 573-587, March.
    15. Lior Rennert & Sharon X. Xie, 2018. "Cox regression model with doubly truncated data," Biometrics, The International Biometric Society, vol. 74(2), pages 725-733, June.
    16. Chyong-Mei Chen & Pao-Sheng Shen, 2018. "Conditional maximum likelihood estimation in semiparametric transformation model with LTRC data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 250-272, April.
    17. Pao-sheng Shen, 2022. "Nonparametric estimation for competing risks survival data subject to left truncation and interval censoring," Computational Statistics, Springer, vol. 37(1), pages 29-42, March.
    18. Pao-sheng Shen, 2013. "Regression analysis of interval censored and doubly truncated data with linear transformation models," Computational Statistics, Springer, vol. 28(2), pages 581-596, April.
    19. Chyong-Mei Chen & Pao-sheng Shen & Yi Liu, 2021. "On semiparametric transformation model with LTRC data: pseudo likelihood approach," Statistical Papers, Springer, vol. 62(1), pages 3-30, February.
    20. Moreira, C. & de Uña-Álvarez, J. & Meira-Machado, L., 2016. "Nonparametric regression with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 294-307.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:203:y:2025:i:c:s0167947324001749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.