IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v31y2025i2d10.1007_s10985-025-09650-5.html
   My bibliography  Save this article

Robust inverse probability weighted estimators for doubly truncated Cox regression with closed-form standard errors

Author

Listed:
  • Omar Vazquez

    (University of Pennsylvania)

  • Sharon X. Xie

    (University of Pennsylvania)

Abstract

Survival data is doubly truncated when only participants who experience an event during a random interval are included in the sample. Existing methods typically correct for double truncation bias in Cox regression through inverse probability weighting via the nonparametric maximum likelihood estimate (NPMLE) of the selection probabilities. This approach relies on two key assumptions, quasi-independent truncation and positivity of the sampling probabilities, yet there are no methods available to thoroughly assess these assumptions in the regression context. Furthermore, these estimators can be particularly sensitive to extreme event times. Finally, current double truncation methods rely on bootstrapping for variance estimation. Aside from the unnecessary computational burden, there are often identifiability issues with the NPMLE during bootstrap resampling. To address these limitations of current methods, we propose a class of robust Cox regression coefficient estimators with time-varying inverse probability weights and extend these estimators to conduct sensitivity analysis regarding possible non-positivity of the sampling probabilities. Also, we develop a nonparametric test and graphical diagnostic for verifying the quasi-independent truncation assumption. Finally, we provide closed-form standard errors for the NPMLE as well as for the proposed estimators. The proposed estimators are evaluated through extensive simulations and illustrated using an AIDS study.

Suggested Citation

  • Omar Vazquez & Sharon X. Xie, 2025. "Robust inverse probability weighted estimators for doubly truncated Cox regression with closed-form standard errors," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 31(2), pages 364-393, April.
  • Handle: RePEc:spr:lifeda:v:31:y:2025:i:2:d:10.1007_s10985-025-09650-5
    DOI: 10.1007/s10985-025-09650-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-025-09650-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-025-09650-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lior Rennert & Sharon X. Xie, 2018. "Cox regression model with doubly truncated data," Biometrics, The International Biometric Society, vol. 74(2), pages 725-733, June.
    2. Yuyao Wang & Andrew Ying & Ronghui Xu, 2024. "Doubly robust estimation under covariate-induced dependent left truncation," Biometrika, Biometrika Trust, vol. 111(3), pages 789-808.
    3. Su, Liangjun & White, Halbert, 2014. "Testing conditional independence via empirical likelihood," Journal of Econometrics, Elsevier, vol. 182(1), pages 27-44.
    4. Shen, Pao-sheng & Hsu, Huichen, 2020. "Conditional maximum likelihood estimation for semiparametric transformation models with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    5. Pao-sheng Shen, 2010. "Nonparametric analysis of doubly truncated data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(5), pages 835-853, October.
    6. Pao-Sheng Shen, 2011. "Testing quasi-independence for doubly truncated data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(3), pages 753-761.
    7. Martin, Emily C. & Betensky, Rebecca A., 2005. "Testing Quasi-Independence of Failure and Truncation Times via Conditional Kendall's Tau," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 484-492, June.
    8. Bella Vakulenko‐Lagun & Jing Qian & Sy Han Chiou & Nancy Wang & Rebecca A. Betensky, 2022. "Nonparametric estimation of the survival distribution under covariate‐induced dependent truncation," Biometrics, The International Biometric Society, vol. 78(4), pages 1390-1401, December.
    9. Shen, Pao-sheng, 2025. "Cox regression model with doubly truncated and interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 203(C).
    10. Gu, Chong, 2014. "Smoothing Spline ANOVA Models: R Package gss," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i05).
    11. Bella Vakulenko‐Lagun & Micha Mandel & Rebecca A. Betensky, 2020. "Inverse probability weighting methods for Cox regression with right‐truncated data," Biometrics, The International Biometric Society, vol. 76(2), pages 484-495, June.
    12. Micha Mandel & Jacobo de Uña†à lvarez & David K. Simon & Rebecca A. Betensky, 2018. "Inverse probability weighted Cox regression for doubly truncated data," Biometrics, The International Biometric Society, vol. 74(2), pages 481-487, June.
    13. Zhou, Yeqing & Liu, Jingyuan & Zhu, Liping, 2020. "Test for conditional independence with application to conditional screening," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    14. J Xiao & M G Hudgens, 2019. "On nonparametric maximum likelihood estimation with double truncation," Biometrika, Biometrika Trust, vol. 106(4), pages 989-996.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lior Rennert & Sharon X. Xie, 2022. "Cox regression model under dependent truncation," Biometrics, The International Biometric Society, vol. 78(2), pages 460-473, June.
    2. Cunjin Zhao & Peijie Wang & Jianguo Sun, 2025. "A pairwise pseudo-likelihood approach for regression analysis of doubly truncated data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 31(2), pages 340-363, April.
    3. Shen, Pao-sheng & Hsu, Huichen, 2020. "Conditional maximum likelihood estimation for semiparametric transformation models with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    4. Shen, Pao-sheng, 2025. "Cox regression model with doubly truncated and interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 203(C).
    5. Carla Moreira & Jacobo de Uña-Álvarez & Roel Braekers, 2021. "Nonparametric estimation of a distribution function from doubly truncated data under dependence," Computational Statistics, Springer, vol. 36(3), pages 1693-1720, September.
    6. Takeshi Emura & Ya-Hsuan Hu & Yoshihiko Konno, 2017. "Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation," Statistical Papers, Springer, vol. 58(3), pages 877-909, September.
    7. Moreira, C. & de Uña-Álvarez, J. & Meira-Machado, L., 2016. "Nonparametric regression with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 294-307.
    8. Bella Vakulenko‐Lagun & Micha Mandel & Rebecca A. Betensky, 2020. "Inverse probability weighting methods for Cox regression with right‐truncated data," Biometrics, The International Biometric Society, vol. 76(2), pages 484-495, June.
    9. Achim Dörre & Chung-Yan Huang & Yi-Kuan Tseng & Takeshi Emura, 2021. "Likelihood-based analysis of doubly-truncated data under the location-scale and AFT model," Computational Statistics, Springer, vol. 36(1), pages 375-408, March.
    10. Peng Liu & Kwun Chuen Gary Chan & Ying Qing Chen, 2023. "On a simple estimation of the proportional odds model under right truncation," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 537-554, July.
    11. Rebecca A. Betensky & Jing Qian & Jingyao Hou, 2023. "Nonparametric and semiparametric estimation with sequentially truncated survival data," Biometrics, The International Biometric Society, vol. 79(2), pages 1000-1013, June.
    12. Hoderlein, Stefan & Su, Liangjun & White, Halbert & Yang, Thomas Tao, 2016. "Testing for monotonicity in unobservables under unconfoundedness," Journal of Econometrics, Elsevier, vol. 193(1), pages 183-202.
    13. Gospodinov, Nikolay & Otsu, Taisuke, 2012. "Local GMM estimation of time series models with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 170(2), pages 476-490.
    14. Breen, Casey & Goldstein, Joshua R., 2022. "Berkeley Unified Numident Mortality Database: Public Administrative Records for Individual-Level Mortality Research," SocArXiv pc294, Center for Open Science.
    15. Hugo Maruri-Aguilar & Henry Wynn, 2023. "Sparse polynomial prediction," Statistical Papers, Springer, vol. 64(4), pages 1233-1249, August.
    16. Fan, Jianqing & Feng, Yang & Xia, Lucy, 2020. "A projection-based conditional dependence measure with applications to high-dimensional undirected graphical models," Journal of Econometrics, Elsevier, vol. 218(1), pages 119-139.
    17. Joakim Wallmark & James O. Ramsay & Juan Li & Marie Wiberg, 2024. "Analyzing Polytomous Test Data: A Comparison Between an Information-Based IRT Model and the Generalized Partial Credit Model," Journal of Educational and Behavioral Statistics, , vol. 49(5), pages 753-779, October.
    18. van den Berg, Gerard J. & Effraimidis, Georgios, 2014. "Dependence Measures in Bivariate Gamma Frailty Models," IZA Discussion Papers 8083, Institute of Labor Economics (IZA).
    19. Kavita Sardana, 2021. "Double truncation in choice-based sample: An application of on-site survey sample," Economics Bulletin, AccessEcon, vol. 41(2), pages 781-787.
    20. Martin Forster & S. D. Smith, 2011. "Surviving slavery: mortality at Mesopotamia, a Jamaican sugar estate, 1762–1832," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(4), pages 907-929, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:31:y:2025:i:2:d:10.1007_s10985-025-09650-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.