IDEAS home Printed from
   My bibliography  Save this article

Nonparametric regression with doubly truncated data


  • Moreira, C.
  • de Uña-Álvarez, J.
  • Meira-Machado, L.


Nonparametric regression with a doubly truncated response is introduced. Local constant and local linear kernel-type estimators are proposed. Asymptotic expressions for the bias and the variance of the estimators are obtained, showing the deterioration provoked by the random truncation. To solve the crucial problem of bandwidth choice, two different bandwidth selectors based on plug-in and cross-validation ideas are introduced. The performance of both the estimators and the bandwidth selectors is investigated through simulations. A real data illustration is included. The main conclusion is that the introduced regression methods perform satisfactorily in the complicated scenario of random double truncation.

Suggested Citation

  • Moreira, C. & de Uña-Álvarez, J. & Meira-Machado, L., 2016. "Nonparametric regression with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 294-307.
  • Handle: RePEc:eee:csdana:v:93:y:2016:i:c:p:294-307 DOI: 10.1016/j.csda.2014.03.017

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Elias Ould-Saïd & Mohamed Lemdani, 2006. "Asymptotic Properties of a Nonparametric Regression Function Estimator with Randomly Truncated Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 357-378, June.
    2. Hardle, W. & Marron, J. S., 1995. "Fast and simple scatterplot smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 20(1), pages 1-17, July.
    3. Pao-sheng Shen, 2010. "Nonparametric analysis of doubly truncated data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(5), pages 835-853, October.
    4. Han-Ying Liang & Jacobo Uña-Álvarez & María Iglesias-Pérez, 2011. "Local polynomial estimation of a conditional mean function with dependent truncated data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 653-677, November.
    5. Martin, Emily C. & Betensky, Rebecca A., 2005. "Testing Quasi-Independence of Failure and Truncation Times via Conditional Kendall's Tau," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 484-492, June.
    6. Moreira, Carla & de Uña-Álvarez, Jacobo & Crujeiras, Rosa M., 2010. "DTDA: An R Package to Analyze Randomly Truncated Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 37(i07).
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:93:y:2016:i:c:p:294-307. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.