IDEAS home Printed from
   My bibliography  Save this article

Local polynomial estimation of a conditional mean function with dependent truncated data


  • Han-Ying Liang


  • Jacobo Uña-Álvarez


  • María Iglesias-Pérez



No abstract is available for this item.

Suggested Citation

  • Han-Ying Liang & Jacobo Uña-Álvarez & María Iglesias-Pérez, 2011. "Local polynomial estimation of a conditional mean function with dependent truncated data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 653-677, November.
  • Handle: RePEc:spr:testjl:v:20:y:2011:i:3:p:653-677 DOI: 10.1007/s11749-011-0234-6

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Elias Ould-Saïd & Mohamed Lemdani, 2006. "Asymptotic Properties of a Nonparametric Regression Function Estimator with Randomly Truncated Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 357-378, June.
    2. Anouar El Ghouch & Ingrid Van Keilegom, 2008. "Non-parametric Regression with Dependent Censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(2), pages 228-247.
    3. Liang, Han-Ying & Li, Deli & Qi, Yongcheng, 2009. "Strong convergence in nonparametric regression with truncated dependent data," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 162-174, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Han-Ying Liang & Jong-Il Baek, 2016. "Asymptotic normality of conditional density estimation with left-truncated and dependent data," Statistical Papers, Springer, vol. 57(1), pages 1-20, March.
    2. repec:spr:aistmt:v:70:y:2018:i:1:d:10.1007_s10463-016-0587-4 is not listed on IDEAS
    3. Wang, Jiang-Feng & Ma, Wei-Min & Zhang, Hui-Zeng & Wen, Li-Min, 2013. "Asymptotic normality for a local composite quantile regression estimator of regression function with truncated data," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1571-1579.
    4. Moreira, C. & de Uña-Álvarez, J. & Meira-Machado, L., 2016. "Nonparametric regression with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 294-307.
    5. Wang, Jiang-Feng & Ma, Wei-Min & Fan, Guo-Liang & Wen, Li-Min, 2015. "Local linear quantile regression with truncated and dependent data," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 232-240.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:20:y:2011:i:3:p:653-677. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.