IDEAS home Printed from
   My bibliography  Save this article

Asymptotic properties of conditional distribution estimator with truncated, censored and dependent data


  • Han-Ying Liang


  • Jacobo Uña-Álvarez


  • María Iglesias-Pérez



In this paper we study the strong and weak convergence with rates for the estimators of the conditional distribution function as well as conditional cumulative hazard rate function for a left truncated and right censored model. It is assumed that the lifetime observations with multivariate covariates form a stationary α-mixing sequence. Also, the almost sure representations and asymptotic normality of the estimators are established. The finite sample performance of the estimators is investigated via simulations. Copyright Sociedad de Estadística e Investigación Operativa 2012

Suggested Citation

  • Han-Ying Liang & Jacobo Uña-Álvarez & María Iglesias-Pérez, 2012. "Asymptotic properties of conditional distribution estimator with truncated, censored and dependent data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 790-810, December.
  • Handle: RePEc:spr:testjl:v:21:y:2012:i:4:p:790-810 DOI: 10.1007/s11749-012-0281-7

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Masry, Elias, 2005. "Nonparametric regression estimation for dependent functional data: asymptotic normality," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 155-177, January.
    2. Zhou, Yong, 1996. "A note on the TJW product-limit estimator for truncated and censored data," Statistics & Probability Letters, Elsevier, vol. 26(4), pages 381-387, March.
    3. Gijbels, I. & Wang, J. L., 1993. "Strong Representations of the Survival Function Estimator for Truncated and Censored Data with Applications," Journal of Multivariate Analysis, Elsevier, vol. 47(2), pages 210-229, November.
    4. Liebscher E., 2001. "Estimation Of The Density And The Regression Function Under Mixing Conditions," Statistics & Risk Modeling, De Gruyter, vol. 19(1), pages 9-26, January.
    5. Gu, Minggao, 1995. "Convergence of increments for cumulative hazard function in a mixed censorship-truncation model with application to hazard estimators," Statistics & Probability Letters, Elsevier, vol. 23(2), pages 135-139, May.
    6. Sun, Liuquan & Zhou, Yong, 1998. "Sequential confidence bands for densities under truncated and censored data," Statistics & Probability Letters, Elsevier, vol. 40(1), pages 31-41, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Liang, Han-Ying & Liu, Ai-Ai, 2013. "Kernel estimation of conditional density with truncated, censored and dependent data," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 40-58.
    2. Han-Ying Liang & Jacobo Uña-álvarez & María Iglesias-pérez, 2015. "A Central Limit Theorem in Non-parametric Regression with Truncated, Censored and Dependent Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 256-269, March.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:21:y:2012:i:4:p:790-810. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.