IDEAS home Printed from https://ideas.repec.org/a/spr/sorede/v35y2024i3d10.1134_s1075700724030031.html
   My bibliography  Save this article

Prospects for the Use of Thermal Storage in Municipal Energy Infrastructure

Author

Listed:
  • E. E. Boyko

    (Energy Research Institute, Russian Academy of Sciences)

  • F. L. Byk

    (Novosibirsk State Technical University)

  • E. M. Ivanova

    (Intellectual Energy Scientific and Educational Center, Novosibirsk State Technical University)

  • P. V. Ilyushin

    (Energy Research Institute, Russian Academy of Sciences)

Abstract

One of the areas for increasing energy efficiency in the production of electrical and thermal energy is the use of cogeneration units (CGU), which is due to an increase in the share of useful heat output to heat supply systems. Large combined heat and power plants (CHPs), as a rule, use steam turbine units, which serve as sources of thermal energy for heating and hot water supply in cities with a high concentration of heat load. In small and medium-sized cities, the main sources of thermal energy are boiler houses. With the advent of modern gas piston and gas turbine units on the market, it is possible to predict the creation of mini-CHPs based on them. To increase their fuel efficiency, it is advisable to use seasonal thermal storage (TS) as part of the municipal energy infrastructure in order to reduce the volume of thermal emissions during the nonheating period.

Suggested Citation

  • E. E. Boyko & F. L. Byk & E. M. Ivanova & P. V. Ilyushin, 2024. "Prospects for the Use of Thermal Storage in Municipal Energy Infrastructure," Studies on Russian Economic Development, Springer, vol. 35(3), pages 357-364, June.
  • Handle: RePEc:spr:sorede:v:35:y:2024:i:3:d:10.1134_s1075700724030031
    DOI: 10.1134/S1075700724030031
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1134/S1075700724030031
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1134/S1075700724030031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahon, Harry & O'Connor, Dominic & Friedrich, Daniel & Hughes, Ben, 2022. "A review of thermal energy storage technologies for seasonal loops," Energy, Elsevier, vol. 239(PC).
    2. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    3. Isye Hayatina & Amar Auckaili & Mohammed Farid, 2023. "Review on the Life Cycle Assessment of Thermal Energy Storage Used in Building Applications," Energies, MDPI, vol. 16(3), pages 1-17, January.
    4. Jiménez Navarro, Juan Pablo & Kavvadias, Konstantinos C. & Quoilin, Sylvain & Zucker, Andreas, 2018. "The joint effect of centralised cogeneration plants and thermal storage on the efficiency and cost of the power system," Energy, Elsevier, vol. 149(C), pages 535-549.
    5. Bakr, Mahmoud & van Oostrom, Niels & Sommer, Wijb, 2013. "Efficiency of and interference among multiple Aquifer Thermal Energy Storage systems; A Dutch case study," Renewable Energy, Elsevier, vol. 60(C), pages 53-62.
    6. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Ruoyu & Liu, Xiaochen & Liu, Xiaohua & Zhang, Tao, 2024. "Quantifying the energy flexibility potential of a centralized air-conditioning system: A field test study of hub airports," Energy, Elsevier, vol. 298(C).
    2. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Sadeghi, Habibollah & Jalali, Ramin & Singh, Rao Martand, 2024. "A review of borehole thermal energy storage and its integration into district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    4. Pavel Atănăsoae & Radu Dumitru Pentiuc & Laurențiu Dan Milici, 2025. "High-Efficiency Cogeneration: A Viable Solution for the Decarbonization of Cities with District Heating Systems," Energies, MDPI, vol. 18(7), pages 1-21, March.
    5. Ushamah, Hafiz Muhammad & Ahmed, Naveed & Elfeky, K.E. & Mahmood, Mariam & Qaisrani, Mumtaz A. & Waqas, Adeel & Zhang, Qian, 2022. "Techno-economic analysis of a hybrid district heating with borehole thermal storage for various solar collectors and climate zones in Pakistan," Renewable Energy, Elsevier, vol. 199(C), pages 1639-1656.
    6. Jiang, Ruicheng & Qian, Gao & Li, Zhi & Yu, Xiaoli & Lu, Yiji, 2024. "Progress and challenges of latent thermal energy storage through external field-dependent heat transfer enhancement methods," Energy, Elsevier, vol. 304(C).
    7. Boldrini, A. & Jiménez Navarro, J.P. & Crijns-Graus, W.H.J. & van den Broek, M.A., 2022. "The role of district heating systems to provide balancing services in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. Bi, Zhenhui & Guo, Yintong & Yang, Chunhe & Yang, Hanzhi & Wang, Lei & He, Yuting & Guo, Wuhao, 2025. "Numerical investigation of fluid dynamics in aquifers for seasonal large-scale hydrogen storage using compositional simulations," Renewable Energy, Elsevier, vol. 239(C).
    9. Chen, Qun & Meng, Nan & He, Ke-Lun & Ma, Huan & Gou, Xing, 2024. "Multi-time scale operation optimization of integrated power and thermal system considering load disturbance," Energy, Elsevier, vol. 302(C).
    10. Nakama, Caroline S.M. & Knudsen, Brage R. & Tysland, Agnes C. & Jäschke, Johannes, 2023. "A simple dynamic optimization-based approach for sizing thermal energy storage using process data," Energy, Elsevier, vol. 268(C).
    11. Dorotić, Hrvoje & Pukšec, Tomislav & Schneider, Daniel Rolph & Duić, Neven, 2021. "Evaluation of district heating with regard to individual systems – Importance of carbon and cost allocation in cogeneration units," Energy, Elsevier, vol. 221(C).
    12. Jimenez-Navarro, Juan-Pablo & Kavvadias, Konstantinos & Filippidou, Faidra & Pavičević, Matija & Quoilin, Sylvain, 2020. "Coupling the heating and power sectors: The role of centralised combined heat and power plants and district heat in a European decarbonised power system," Applied Energy, Elsevier, vol. 270(C).
    13. Chen, Kecheng & Sun, Xiang & Soga, Kenichi & Nico, Peter S. & Dobson, Patrick F., 2024. "Machine-learning-assisted long-term G functions for bidirectional aquifer thermal energy storage system operation," Energy, Elsevier, vol. 301(C).
    14. Yi Zhang & Haoran Yu & Yingzhen Hou & Neng Zhu, 2025. "Multi-Objective Optimization Research Based on NSGA-II and Experimental Study of Triplex-Tube Phase Change Thermal Energy Storage System," Energies, MDPI, vol. 18(8), pages 1-27, April.
    15. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
    16. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    17. Beata Pytlik & Daniel Smykowski & Piotr Szulc, 2022. "The Impact of Baffle Geometry in the PCM Heat Storage Unit on the Charging Process with High and Low Water Streams," Energies, MDPI, vol. 15(24), pages 1-17, December.
    18. A. J. Jin & C. Li & J. Su & J. Tan, 2022. "Fundamental Studies of Smart Distributed Energy Resources along with Energy Blockchain," Energies, MDPI, vol. 15(21), pages 1-12, October.
    19. Han, X.C. & Xu, H.J. & Hua, W.S., 2023. "Decomposition performance and kinetics analysis of magnesium hydroxide regulated with C/N/Ti/Si additives for thermochemical heat storage," Applied Energy, Elsevier, vol. 344(C).
    20. Feng, Yupeng & Hu, Xiannan & Li, Xuhan & Zhang, Man & Zhu, Shahong & Yang, Hairui, 2023. "Self-compensation and attenuation mechanisms of carbide slag in multicycle thermochemical heat storage," Renewable Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sorede:v:35:y:2024:i:3:d:10.1134_s1075700724030031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.