IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v4y2023i2d10.1007_s43069-023-00224-5.html
   My bibliography  Save this article

Learning Optimal Solutions via an LSTM-Optimization Framework

Author

Listed:
  • Dogacan Yilmaz

    (New Jersey Institute of Technology)

  • İ. Esra Büyüktahtakın

    (Virginia Tech)

Abstract

In this study, we present a deep learning-optimization framework to tackle dynamic mixed-integer programs. Specifically, we develop a bidirectional Long Short Term Memory (LSTM) framework that can process information forward and backward in time to learn optimal solutions to sequential decision-making problems. We demonstrate our approach in predicting the optimal decisions for the single-item capacitated lot-sizing problem (CLSP), where a binary variable denotes whether to produce in a period or not. Due to the dynamic nature of the production and inventory levels that must meet the periodic demand, the CLSP can be treated as a sequence labeling task where a recurrent neural network can capture the problem’s temporal dynamics. Computational results show that our LSTM-Optimization (LSTM-Opt) framework significantly reduces the solution time of benchmark CLSP problems without much loss in feasibility and optimality. For example, the predictions at the 85% level reduce the CPLEX solution time by a factor of 9 on average for over 240000 test instances with an optimality gap of less than 0.05% and 0.4% infeasibility in the test set. Also, models trained using shorter planning horizons can successfully predict the optimal solution of the instances with longer planning horizons. For the hardest data set, the LSTM predictions at the 25% level reduce the solution time of 70 CPU hours to less than 2 CPU minutes with an optimality gap of 0.8% and without any infeasibility. The LSTM-Opt framework outperforms classical ML algorithms, such as the logistic regression and random forest, in terms of the solution quality, and exact approaches, such as the ( $$\ell$$ ℓ , S) and dynamic programming-based inequalities, with respect to the solution time improvement. Our machine learning approach could be beneficial in tackling sequential decision-making problems similar to CLSP, which need to be solved repetitively, frequently, and in a fast manner.

Suggested Citation

  • Dogacan Yilmaz & İ. Esra Büyüktahtakın, 2023. "Learning Optimal Solutions via an LSTM-Optimization Framework," SN Operations Research Forum, Springer, vol. 4(2), pages 1-40, June.
  • Handle: RePEc:spr:snopef:v:4:y:2023:i:2:d:10.1007_s43069-023-00224-5
    DOI: 10.1007/s43069-023-00224-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-023-00224-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-023-00224-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gabriel R. Bitran & Horacio H. Yanasse, 1982. "Computational Complexity of the Capacitated Lot Size Problem," Management Science, INFORMS, vol. 28(10), pages 1174-1186, October.
    2. BARANY, Imre & VAN ROY, Tony J. & WOLSEY, Laurence A., 1984. "Strong formulations for multi-item capacitated lot sizing," LIDAM Reprints CORE 590, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Andrea Lodi & Giulia Zarpellon, 2017. "Rejoinder on: On learning and branching: a survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 247-248, July.
    4. Karina Copil & Martin Wörbelauer & Herbert Meyr & Horst Tempelmeier, 2017. "Simultaneous lotsizing and scheduling problems: a classification and review of models," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 1-64, January.
    5. Gary D. Eppen & R. Kipp Martin, 1987. "Solving Multi-Item Capacitated Lot-Sizing Problems Using Variable Redefinition," Operations Research, INFORMS, vol. 35(6), pages 832-848, December.
    6. Kate A. Smith, 1999. "Neural Networks for Combinatorial Optimization: A Review of More Than a Decade of Research," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 15-34, February.
    7. Imre Barany & Tony J. Van Roy & Laurence A. Wolsey, 1984. "Strong Formulations for Multi-Item Capacitated Lot Sizing," Management Science, INFORMS, vol. 30(10), pages 1255-1261, October.
    8. Andrea Lodi & Giulia Zarpellon, 2017. "On learning and branching: a survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 207-236, July.
    9. Joseph Hartman & İ. Büyüktahtakin & J. Smith, 2010. "Dynamic-programming-based inequalities for the capacitated lot-sizing problem," IISE Transactions, Taylor & Francis Journals, vol. 42(12), pages 915-930.
    10. Gabriel R. Bitran & Elizabeth A. Haas & Hirofumi Matsuo, 1986. "Production Planning of Style Goods with High Setup Costs and Forecast Revisions," Operations Research, INFORMS, vol. 34(2), pages 226-236, April.
    11. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Raiconi & Julia Pahl & Monica Gentili & Stefan Voß & Raffaele Cerulli, 2017. "Tactical Production and Lot Size Planning with Lifetime Constraints: A Comparison of Model Formulations," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(05), pages 1-24, October.
    2. B Karimi & S M T Fatemi Ghomi & J M Wilson, 2006. "A tabu search heuristic for solving the CLSP with backlogging and set-up carry-over," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(2), pages 140-147, February.
    3. Lee, Younsoo & Lee, Kyungsik, 2023. "Valid inequalities and extended formulations for lot-sizing and scheduling problem with sequence-dependent setups," European Journal of Operational Research, Elsevier, vol. 310(1), pages 201-216.
    4. Nadjib Brahimi & Stéphane Dauzère-Pérès & Najib M. Najid, 2006. "Capacitated Multi-Item Lot-Sizing Problems with Time Windows," Operations Research, INFORMS, vol. 54(5), pages 951-967, October.
    5. Drexl, Andreas & Kimms, Alf, 1996. "Lot sizing and scheduling: Survey and extensions," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 421, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    6. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    7. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    8. Kerem Akartunalı & Andrew Miller, 2012. "A computational analysis of lower bounds for big bucket production planning problems," Computational Optimization and Applications, Springer, vol. 53(3), pages 729-753, December.
    9. Mocquillon, Cédric & Lenté, Christophe & T'Kindt, Vincent, 2011. "An efficient heuristic for medium-term planning in shampoo production," International Journal of Production Economics, Elsevier, vol. 129(1), pages 178-185, January.
    10. I. Karakayali & E. Akçalı & S. Çetinkaya & H. Üster, 2013. "Capacitated replenishment and disposal planning for multiple products with resalable returns," Annals of Operations Research, Springer, vol. 203(1), pages 325-350, March.
    11. Tao Wu & Leyuan Shi & Joseph Geunes & Kerem Akartunalı, 2012. "On the equivalence of strong formulations for capacitated multi-level lot sizing problems with setup times," Journal of Global Optimization, Springer, vol. 53(4), pages 615-639, August.
    12. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    13. Eric Larsen & Sébastien Lachapelle & Yoshua Bengio & Emma Frejinger & Simon Lacoste-Julien & Andrea Lodi, 2022. "Predicting Tactical Solutions to Operational Planning Problems Under Imperfect Information," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 227-242, January.
    14. Doostmohammadi, Mahdi & Akartunalı, Kerem, 2018. "Valid inequalities for two-period relaxations of big-bucket lot-sizing problems: Zero setup case," European Journal of Operational Research, Elsevier, vol. 267(1), pages 86-95.
    15. Kerem Akartunalı & Ioannis Fragkos & Andrew J. Miller & Tao Wu, 2016. "Local Cuts and Two-Period Convex Hull Closures for Big-Bucket Lot-Sizing Problems," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 766-780, November.
    16. Hartmut Stadtler & Malte Meistering, 2019. "Model formulations for the capacitated lot-sizing problem with service-level constraints," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 1025-1056, December.
    17. Bunn, Kevin A. & Ventura, José A., 2023. "A dynamic programming approach for the two-product capacitated lot-sizing problem with concave costs," European Journal of Operational Research, Elsevier, vol. 307(1), pages 116-129.
    18. Silvio Alexandre de Araujo & Bert De Reyck & Zeger Degraeve & Ioannis Fragkos & Raf Jans, 2015. "Period Decompositions for the Capacitated Lot Sizing Problem with Setup Times," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 431-448, August.
    19. Bengio, Yoshua & Lodi, Andrea & Prouvost, Antoine, 2021. "Machine learning for combinatorial optimization: A methodological tour d’horizon," European Journal of Operational Research, Elsevier, vol. 290(2), pages 405-421.
    20. Christoph Hertrich & Martin Skutella, 2023. "Provably Good Solutions to the Knapsack Problem via Neural Networks of Bounded Size," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1079-1097, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:4:y:2023:i:2:d:10.1007_s43069-023-00224-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.