IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v57y2006i2d10.1057_palgrave.jors.2601968.html
   My bibliography  Save this article

A tabu search heuristic for solving the CLSP with backlogging and set-up carry-over

Author

Listed:
  • B Karimi

    (Amirkabir University of Technology)

  • S M T Fatemi Ghomi

    (Amirkabir University of Technology)

  • J M Wilson

    (Loughborough University)

Abstract

In this paper, the multi-item, single-level, capacitated, dynamic lot sizing problem with set-up carry-over and backlogging, abbreviated to CLSP+, is considered. The problem is formulated as a mixed integer programming problem. A heuristic method consisting of four elements: (1) a demand shifting rule, (2) lot size determination rules, (3) checking feasibility conditions and (4) set-up carry-over determination, provides us with an initial feasible solution. The resulting feasible solution is improved by adopting the corresponding set-up and set-up carry-over schedule and re-optimizing it by solving a minimum-cost network flow problem. Then the improved solution is used as a starting solution for a tabu search procedure, with the value of moves assessed using the same minimum-cost network problem. Computational results on randomly generated problems show that the algorithm, which is coded in C++, is able to provide optimal solutions or solutions extremely close to optimal. The computational efficiency makes it possible to solve reasonably large problem instances routinely on a personal computer.

Suggested Citation

  • B Karimi & S M T Fatemi Ghomi & J M Wilson, 2006. "A tabu search heuristic for solving the CLSP with backlogging and set-up carry-over," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(2), pages 140-147, February.
  • Handle: RePEc:pal:jorsoc:v:57:y:2006:i:2:d:10.1057_palgrave.jors.2601968
    DOI: 10.1057/palgrave.jors.2601968
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601968
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gabriel R. Bitran & Horacio H. Yanasse, 1982. "Computational Complexity of the Capacitated Lot Size Problem," Management Science, INFORMS, vol. 28(10), pages 1174-1186, October.
    2. BARANY, Imre & VAN ROY, Tony J. & WOLSEY, Laurence A., 1984. "Strong formulations for multi-item capacitated lot sizing," LIDAM Reprints CORE 590, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Imre Barany & Tony J. Van Roy & Laurence A. Wolsey, 1984. "Strong Formulations for Multi-Item Capacitated Lot Sizing," Management Science, INFORMS, vol. 30(10), pages 1255-1261, October.
    4. Dimitri P. Bertsekas & Paul Tseng, 1988. "Relaxation Methods for Minimum Cost Ordinary and Generalized Network Flow Problems," Operations Research, INFORMS, vol. 36(1), pages 93-114, February.
    5. Glover, Fred, 1998. "Tabu search -- wellsprings and challenges," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 221-225, April.
    6. De Bodt, Marc A. & Gelders, Ludo F. & Van Wassenhove, Luk N., 1984. "Lot sizing under dynamic demand conditions: A review," Engineering Costs and Production Economics, Elsevier, vol. 8(3), pages 165-187, December.
    7. Agha Iqbal Ali & Rema Padman & Hemalatha Thiagarajan, 1989. "Dual Algorithms for Pure Network Problems," Operations Research, INFORMS, vol. 37(1), pages 159-171, February.
    8. POCHET, Yves & WOLSEY, Laurence A., 1988. "Lot-size models with backlogging: strong reformulations and cutting planes," LIDAM Reprints CORE 791, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Millar, Harvey H. & Yang, Minzhu, 1994. "Lagrangian heuristics for the capacitated multi-item lot-sizing problem with backordering," International Journal of Production Economics, Elsevier, vol. 34(1), pages 1-15, February.
    10. Gary D. Eppen & R. Kipp Martin, 1987. "Solving Multi-Item Capacitated Lot-Sizing Problems Using Variable Redefinition," Operations Research, INFORMS, vol. 35(6), pages 832-848, December.
    11. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    12. M. Florian & J. K. Lenstra & A. H. G. Rinnooy Kan, 1980. "Deterministic Production Planning: Algorithms and Complexity," Management Science, INFORMS, vol. 26(7), pages 669-679, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Quadt & Heinrich Kuhn, 2009. "Capacitated lot‐sizing and scheduling with parallel machines, back‐orders, and setup carry‐over," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(4), pages 366-384, June.
    2. Wu, Tao & Shi, Leyuan & Geunes, Joseph & AkartunalI, Kerem, 2011. "An optimization framework for solving capacitated multi-level lot-sizing problems with backlogging," European Journal of Operational Research, Elsevier, vol. 214(2), pages 428-441, October.
    3. Robinson, Powell & Narayanan, Arunachalam & Sahin, Funda, 2009. "Coordinated deterministic dynamic demand lot-sizing problem: A review of models and algorithms," Omega, Elsevier, vol. 37(1), pages 3-15, February.
    4. Yongjian Li & Xiaoqiang Cai & Lei Xu & Wenxia Yang, 2016. "Heuristic approach on dynamic lot-sizing model for durable products with end-of-use constraints," Annals of Operations Research, Springer, vol. 242(2), pages 265-283, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    2. Andrea Raiconi & Julia Pahl & Monica Gentili & Stefan Voß & Raffaele Cerulli, 2017. "Tactical Production and Lot Size Planning with Lifetime Constraints: A Comparison of Model Formulations," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(05), pages 1-24, October.
    3. Drexl, Andreas & Kimms, Alf, 1996. "Lot sizing and scheduling: Survey and extensions," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 421, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    4. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    5. Kerem Akartunalı & Andrew Miller, 2012. "A computational analysis of lower bounds for big bucket production planning problems," Computational Optimization and Applications, Springer, vol. 53(3), pages 729-753, December.
    6. Nadjib Brahimi & Stéphane Dauzère-Pérès & Najib M. Najid, 2006. "Capacitated Multi-Item Lot-Sizing Problems with Time Windows," Operations Research, INFORMS, vol. 54(5), pages 951-967, October.
    7. Kerem Akartunalı & Ioannis Fragkos & Andrew J. Miller & Tao Wu, 2016. "Local Cuts and Two-Period Convex Hull Closures for Big-Bucket Lot-Sizing Problems," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 766-780, November.
    8. Dogacan Yilmaz & İ. Esra Büyüktahtakın, 2023. "Learning Optimal Solutions via an LSTM-Optimization Framework," SN Operations Research Forum, Springer, vol. 4(2), pages 1-40, June.
    9. AkartunalI, Kerem & Miller, Andrew J., 2009. "A heuristic approach for big bucket multi-level production planning problems," European Journal of Operational Research, Elsevier, vol. 193(2), pages 396-411, March.
    10. Mocquillon, Cédric & Lenté, Christophe & T'Kindt, Vincent, 2011. "An efficient heuristic for medium-term planning in shampoo production," International Journal of Production Economics, Elsevier, vol. 129(1), pages 178-185, January.
    11. Brahimi, Nadjib & Dauzere-Peres, Stephane & Najid, Najib M. & Nordli, Atle, 2006. "Single item lot sizing problems," European Journal of Operational Research, Elsevier, vol. 168(1), pages 1-16, January.
    12. Absi, Nabil & Kedad-Sidhoum, Safia, 2008. "The multi-item capacitated lot-sizing problem with setup times and shortage costs," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1351-1374, March.
    13. Wei, Mingyuan & Qi, Mingyao & Wu, Tao & Zhang, Canrong, 2019. "Distance and matching-induced search algorithm for the multi-level lot-sizing problem with substitutable bill of materials," European Journal of Operational Research, Elsevier, vol. 277(2), pages 521-541.
    14. I. Karakayali & E. Akçalı & S. Çetinkaya & H. Üster, 2013. "Capacitated replenishment and disposal planning for multiple products with resalable returns," Annals of Operations Research, Springer, vol. 203(1), pages 325-350, March.
    15. Hartmut Stadtler & Malte Meistering, 2019. "Model formulations for the capacitated lot-sizing problem with service-level constraints," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 1025-1056, December.
    16. Bunn, Kevin A. & Ventura, José A., 2023. "A dynamic programming approach for the two-product capacitated lot-sizing problem with concave costs," European Journal of Operational Research, Elsevier, vol. 307(1), pages 116-129.
    17. François Vanderbeck, 1998. "Lot-Sizing with Start-Up Times," Management Science, INFORMS, vol. 44(10), pages 1409-1425, October.
    18. Drexl, A. & Kimms, A., 1997. "Lot sizing and scheduling -- Survey and extensions," European Journal of Operational Research, Elsevier, vol. 99(2), pages 221-235, June.
    19. Francesco Gaglioppa & Lisa A. Miller & Saif Benjaafar, 2008. "Multitask and Multistage Production Planning and Scheduling for Process Industries," Operations Research, INFORMS, vol. 56(4), pages 1010-1025, August.
    20. Petering, Matthew E.H. & Chen, Xi & Hsieh, Wen-Huan, 2019. "Inventory control with flexible demand: Cyclic case with multiple batch supply and demand processes," International Journal of Production Economics, Elsevier, vol. 212(C), pages 60-77.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:57:y:2006:i:2:d:10.1057_palgrave.jors.2601968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.