IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v16y2013i2p147-159.html
   My bibliography  Save this article

Goodness-of-fit testing for fractional diffusions

Author

Listed:
  • Mark Podolskij
  • Katrin Wasmuth

Abstract

This paper presents a goodness-of-fit test for the volatility function of a SDE driven by a Gaussian process with stationary and centered increments. Under rather weak assumptions on the Gaussian process, we provide a procedure for testing whether the unknown volatility function lies in a given linear functional space or not. This testing problem is highly non-trivial, because the volatility function is not identifiable in our model. The underlying fractional diffusion is assumed to be observed at high frequency on a fixed time interval and the test statistic is based on weighted power variations. Our test statistic is consistent against any fixed alternative. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Mark Podolskij & Katrin Wasmuth, 2013. "Goodness-of-fit testing for fractional diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 16(2), pages 147-159, July.
  • Handle: RePEc:spr:sistpr:v:16:y:2013:i:2:p:147-159
    DOI: 10.1007/s11203-013-9082-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11203-013-9082-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11203-013-9082-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Podolskij & Mathias Vetter, 2010. "Understanding limit theorems for semimartingales: a short survey," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(3), pages 329-351, August.
    2. Mark Podolskij & Mathias Vetter, 2010. "Understanding limit theorems for semimartingales: a short survey," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(s1), pages 329-351.
    3. Barndorff-Nielsen, Ole E. & Corcuera, José Manuel & Podolskij, Mark, 2009. "Power variation for Gaussian processes with stationary increments," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1845-1865, June.
    4. Holger Dette & Mark Podolskij & Mathias Vetter, 2006. "Estimation of Integrated Volatility in Continuous‐Time Financial Models with Applications to Goodness‐of‐Fit Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(2), pages 259-278, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2017. "Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment," CREATES Research Papers 2017-30, Department of Economics and Business Economics, Aarhus University.
    2. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2016. "Testing for heteroscedasticity in jumpy and noisy high-frequency data: A resampling approach," CREATES Research Papers 2016-27, Department of Economics and Business Economics, Aarhus University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Basse-O'Connor & Mark Podolskij, 2015. "On critical cases in limit theory for stationary increments Lévy driven moving averages," CREATES Research Papers 2015-57, Department of Economics and Business Economics, Aarhus University.
    2. Andreas Basse-O'Connor & Raphaël Lachièze-Rey & Mark Podolskij, 2015. "Limit theorems for stationary increments Lévy driven moving averages," CREATES Research Papers 2015-56, Department of Economics and Business Economics, Aarhus University.
    3. Corcuera, José Manuel & Hedevang, Emil & Pakkanen, Mikko S. & Podolskij, Mark, 2013. "Asymptotic theory for Brownian semi-stationary processes with application to turbulence," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2552-2574.
    4. Mark Podolskij & Christian Schmidt & Mathias Vetter, 2015. "On U- and V-statistics for discontinuous Itô semimartingale," CREATES Research Papers 2015-52, Department of Economics and Business Economics, Aarhus University.
    5. Altmeyer, Randolf & Bibinger, Markus, 2015. "Functional stable limit theorems for quasi-efficient spectral covolatility estimators," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4556-4600.
    6. Aleksey Kolokolov & Giulia Livieri & Davide Pirino, 2022. "Testing for Endogeneity of Irregular Sampling Schemes," CEIS Research Paper 547, Tor Vergata University, CEIS, revised 19 Dec 2022.
    7. Neil Shephard & Kevin Sheppard, 2012. "Efficient and feasible inference for the components of financial variation using blocked multipower variation," Economics Series Working Papers 593, University of Oxford, Department of Economics.
    8. Mark Podolskij & Katrin Wasmuth, 2012. "Goodness-of-fit testing for fractional diffusions," CREATES Research Papers 2012-12, Department of Economics and Business Economics, Aarhus University.
    9. Yuta Koike & Zhi Liu, 2019. "Asymptotic properties of the realized skewness and related statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 703-741, August.
    10. Loboda, Dennis & Mies, Fabian & Steland, Ansgar, 2021. "Regularity of multifractional moving average processes with random Hurst exponent," Stochastic Processes and their Applications, Elsevier, vol. 140(C), pages 21-48.
    11. Markus Bibinger & Mathias Vetter, 2013. "Estimating the quadratic covariation of an asynchronously observed semimartingale with jumps," SFB 649 Discussion Papers SFB649DP2013-029, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    12. Yuta Koike, 2017. "Time endogeneity and an optimal weight function in pre-averaging covariance estimation," Statistical Inference for Stochastic Processes, Springer, vol. 20(1), pages 15-56, April.
    13. Hounyo, Ulrich, 2017. "Bootstrapping integrated covariance matrix estimators in noisy jump–diffusion models with non-synchronous trading," Journal of Econometrics, Elsevier, vol. 197(1), pages 130-152.
    14. Dovonon, Prosper & Gonçalves, Sílvia & Meddahi, Nour, 2013. "Bootstrapping realized multivariate volatility measures," Journal of Econometrics, Elsevier, vol. 172(1), pages 49-65.
    15. Markus Bibinger, 2011. "Asymptotics of Asynchronicity," SFB 649 Discussion Papers SFB649DP2011-033, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    16. Randolf Altmeyer & Markus Bibinger, 2014. "Functional stable limit theorems for efficient spectral covolatility estimators," SFB 649 Discussion Papers SFB649DP2014-005, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    17. Ivanovs, Jevgenijs & Thøstesen, Jakob D., 2021. "Discretization of the Lamperti representation of a positive self-similar Markov process," Stochastic Processes and their Applications, Elsevier, vol. 137(C), pages 200-221.
    18. Caporin, Massimiliano & Kolokolov, Aleksey & Renò, Roberto, 2017. "Systemic co-jumps," Journal of Financial Economics, Elsevier, vol. 126(3), pages 563-591.
    19. Ulrich Hounyo, 2014. "Bootstrapping integrated covariance matrix estimators in noisy jump-diffusion models with non-synchronous trading," CREATES Research Papers 2014-35, Department of Economics and Business Economics, Aarhus University.
    20. Bibinger, Markus, 2012. "An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2411-2453.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:16:y:2013:i:2:p:147-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.