IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v127y2022i9d10.1007_s11192-022-04283-z.html
   My bibliography  Save this article

Identifying disruptive technologies by integrating multi-source data

Author

Listed:
  • Xiwen Liu

    (Chinese Academy of Sciences
    University of Chinese Academic of Sciences)

  • Xuezhao Wang

    (Chinese Academy of Sciences
    University of Chinese Academic of Sciences)

  • Lucheng Lyu

    (Chinese Academy of Sciences
    University of Chinese Academic of Sciences)

  • Yanpeng Wang

    (Chinese Academy of Sciences
    University of Chinese Academic of Sciences)

Abstract

Identifying disruptive technologies has important value for the decision-making in technology layout and investment. The identification methods of disruptive technologies based on data mining have attracted much attention recently, but most of the existing studies use single data for the identification, that may cause bias. Therefore, this paper uses multi-source data which represent the “science-technology-industry-market” chain to identify disruptive technologies. In addition, this paper improves the two steps, generating candidate technology list and evaluating disruptive potential, in the general process of identifying disruptive technologies separately and develops two new methods. One method is to obtain the list of potential disruptive technologies from experts and then evaluate the technology disruptive potential by using a multi-dimensional index system. The case study of this method is carried out in life science field, and four types of data (papers, patents, data of start-ups and public opinion) are used to evaluate thepotential disruptive technologies. Another method is to generate the list of potential disruptive technologies by mining multi-source data and then evaluate the technology disruptive potential by experts. The case study of this method is carried out in energy technology filed and life science, and three types of data (papers, patents and projects) are used for mining to generate the candidate technologies list. The effectiveness of the two methods using multi-source data is verified by comparing the results with the list of technologies given by experts in advance.

Suggested Citation

  • Xiwen Liu & Xuezhao Wang & Lucheng Lyu & Yanpeng Wang, 2022. "Identifying disruptive technologies by integrating multi-source data," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5325-5351, September.
  • Handle: RePEc:spr:scient:v:127:y:2022:i:9:d:10.1007_s11192-022-04283-z
    DOI: 10.1007/s11192-022-04283-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-022-04283-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-022-04283-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kilkki, Kalevi & Mäntylä, Martti & Karhu, Kimmo & Hämmäinen, Heikki & Ailisto, Heikki, 2018. "A disruption framework," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 275-284.
    2. Pao-Long Chang & Chao-Chan Wu & Hoang-Jyh Leu, 2010. "Using patent analyses to monitor the technological trends in an emerging field of technology: a case of carbon nanotube field emission display," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(1), pages 5-19, January.
    3. Yoshiko Okubo, 1997. "Bibliometric Indicators and Analysis of Research Systems: Methods and Examples," OECD Science, Technology and Industry Working Papers 1997/1, OECD Publishing.
    4. Ashish Sood & Gerard J. Tellis, 2011. "Demystifying Disruption: A New Model for Understanding and Predicting Disruptive Technologies," Marketing Science, INFORMS, vol. 30(2), pages 339-354, 03-04.
    5. Lee, Changyong & Kwon, Ohjin & Kim, Myeongjung & Kwon, Daeil, 2018. "Early identification of emerging technologies: A machine learning approach using multiple patent indicators," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 291-303.
    6. Dotsika, Fefie & Watkins, Andrew, 2017. "Identifying potentially disruptive trends by means of keyword network analysis," Technological Forecasting and Social Change, Elsevier, vol. 119(C), pages 114-127.
    7. Douglas K. R. Robinson & Martin Ruivenkamp & Arie Rip, 2007. "Tracking the evolution of new and emerging S&T via statement-linkages: Vision assessment in molecular machines," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 831-858, March.
    8. Momeni, Abdolreza & Rost, Katja, 2016. "Identification and monitoring of possible disruptive technologies by patent-development paths and topic modeling," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 16-29.
    9. Péter Érdi & Kinga Makovi & Zoltán Somogyvári & Katherine Strandburg & Jan Tobochnik & Péter Volf & László Zalányi, 2013. "Prediction of emerging technologies based on analysis of the US patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 225-242, April.
    10. S. Phineas Upham & Henry Small, 2010. "Emerging research fronts in science and technology: patterns of new knowledge development," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(1), pages 15-38, April.
    11. Nares Damrongchai & Ponpiboon Satangput & Greg Tegart & Chatri Sripaipan, 2010. "Future technology analysis for biosecurity and emerging infectious diseases in Asia-Pacific," Science and Public Policy, Oxford University Press, vol. 37(1), pages 41-50, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minhao Xiang & Dian Fu & Kun Lv, 2023. "Identifying and Predicting Trends of Disruptive Technologies: An Empirical Study Based on Text Mining and Time Series Forecasting," Sustainability, MDPI, vol. 15(6), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeong, Yujin & Park, Inchae & Yoon, Byungun, 2019. "Identifying emerging Research and Business Development (R&BD) areas based on topic modeling and visualization with intellectual property right data," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 655-672.
    2. Serhat Burmaoglu & Olivier Sartenaer & Alan Porter & Munan Li, 2019. "Analysing the theoretical roots of technology emergence: an evolutionary perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 97-118, April.
    3. Minhao Xiang & Dian Fu & Kun Lv, 2023. "Identifying and Predicting Trends of Disruptive Technologies: An Empirical Study Based on Text Mining and Time Series Forecasting," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    4. Porter, Alan L. & Chiavetta, Denise & Newman, Nils C., 2020. "Measuring tech emergence: A contest," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    5. Choi, Jaewoong & Yoon, Janghyeok, 2022. "Measuring knowledge exploration distance at the patent level: Application of network embedding and citation analysis," Journal of Informetrics, Elsevier, vol. 16(2).
    6. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    7. Blume, Maximilian & Oberländer, Anna Maria & Röglinger, Maximilian & Rosemann, Michael & Wyrtki, Katrin, 2020. "Ex ante assessment of disruptive threats: Identifying relevant threats before one is disrupted," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    8. Marić, Josip & Opazo-Basáez, Marco & Vlačić, Božidar & Dabić, Marina, 2023. "Innovation management of three-dimensional printing (3DP) technology: Disclosing insights from existing literature and determining future research streams," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    9. Ying Huang & Donghua Zhu & Yue Qian & Yi Zhang & Alan L. Porter & Yuqin Liu & Ying Guo, 2017. "A hybrid method to trace technology evolution pathways: a case study of 3D printing," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 185-204, April.
    10. Cheng, Yu & Huang, Lucheng & Ramlogan, Ronnie & Li, Xin, 2017. "Forecasting of potential impacts of disruptive technology in promising technological areas: Elaborating the SIRS epidemic model in RFID technology," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 170-183.
    11. Uzuegbunam, Ikenna & Geringer, J. Michael, 2021. "Culture, connectedness, and international adoption of disruptive innovation," Journal of International Management, Elsevier, vol. 27(1).
    12. Lu, Kun & Yang, Guancan & Wang, Xue, 2022. "Topics emerged in the biomedical field and their characteristics," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    13. Yang, Zaoli & Zhang, Weijian & Yuan, Fei & Islam, Nazrul, 2021. "Measuring topic network centrality for identifying technology and technological development in online communities," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    14. Roh, Taeyeoun & Yoon, Byungun, 2023. "Discovering technology and science innovation opportunity based on sentence generation algorithm," Journal of Informetrics, Elsevier, vol. 17(2).
    15. Sommarberg, Matti & Mäkinen, Saku J., 2019. "A method for anticipating the disruptive nature of digitalization in the machine-building industry," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 808-819.
    16. Julian Marius Müller & Raphael Kunderer, 2019. "Ex-Ante Prediction of Disruptive Innovation: The Case of Battery Technologies," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    17. Guo, Jianfeng & Pan, Jiaofeng & Guo, Jianxin & Gu, Fu & Kuusisto, Jari, 2019. "Measurement framework for assessing disruptive innovations," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 250-265.
    18. Hanlin You & Mengjun Li & Jiang Jiang & Bingfeng Ge & Xueting Zhang, 2017. "Evolution monitoring for innovation sources using patent cluster analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 693-715, May.
    19. Changyong Lee & Suckwon Hong & Juram Kim, 2021. "Anticipating multi-technology convergence: a machine learning approach using patent information," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 1867-1896, March.
    20. Erzurumlu, S. Sinan & Pachamanova, Dessislava, 2020. "Topic modeling and technology forecasting for assessing the commercial viability of healthcare innovations," Technological Forecasting and Social Change, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:127:y:2022:i:9:d:10.1007_s11192-022-04283-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.