IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v129y2024i4d10.1007_s11192-024-04961-0.html
   My bibliography  Save this article

Mapping and comparing the technology evolution paths of scientific papers and patents: an integrated approach for forecasting technology trends

Author

Listed:
  • Peng Liu

    (Zhengzhou University)

  • Wei Zhou

    (Zhengzhou University)

  • Lijie Feng

    (Zhengzhou University
    Shanghai Maritime University)

  • Jinfeng Wang

    (Shanghai Maritime University)

  • Kuo-Yi Lin

    (Guilin University of Electronic Technology)

  • Xuan Wu

    (Zhengzhou University)

  • Dingtang Zhang

    (Zhengzhou Coal Mining Machinery Group Co., Ltd)

Abstract

Exploring the key technology evolution paths in specific technological domains is essential to stimulate the technological innovation of enterprises. There have been many methods to identify the technology evolution path, but many of them still had some limitations. Firstly, many studies consider only a single type of data source without analyzing and comparing multiple data sources, which may lead to incomplete evolution paths. Secondly, the text mining methods ignore the semantic relationships between technical terms, making path tracing inaccurate. In this study, we develop an integrated approach for mapping the technology evolution paths of scientific papers and patents. To better forecast the technology development trends, the gap analysis between scientific papers and patents and the identification of potential topics are also applied. The all-solid-state lithium-ion battery technology is selected for the empirical study and the related technology evolution trends and the technology opportunities are focused on. The empirical case research results show the proposed method’s validity and feasibility. This method can be helpful for understanding and analyzing the specific technology, which provides clues for forecasting technology development trends in enterprises. Furthermore, it contributes to the coordination of research and development efforts, which provides a reference for enterprises to identify technology innovation opportunities.

Suggested Citation

  • Peng Liu & Wei Zhou & Lijie Feng & Jinfeng Wang & Kuo-Yi Lin & Xuan Wu & Dingtang Zhang, 2024. "Mapping and comparing the technology evolution paths of scientific papers and patents: an integrated approach for forecasting technology trends," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(4), pages 1975-2005, April.
  • Handle: RePEc:spr:scient:v:129:y:2024:i:4:d:10.1007_s11192-024-04961-0
    DOI: 10.1007/s11192-024-04961-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-024-04961-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-024-04961-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coccia, Mario, 2019. "The theory of technological parasitism for the measurement of the evolution of technology and technological forecasting," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 289-304.
    2. Balland, Pierre-Alexandre & Boschma, Ron, 2022. "Do scientific capabilities in specific domains matter for technological diversification in European regions?," Research Policy, Elsevier, vol. 51(10).
    3. Yashuang Qi & Na Zhu & Yujia Zhai & Ying Ding, 2018. "The mutually beneficial relationship of patents and scientific literature: topic evolution in nanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 893-911, May.
    4. Cassidy R. Sugimoto & Daifeng Li & Terrell G. Russell & S. Craig Finlay & Ying Ding, 2011. "The shifting sands of disciplinary development: Analyzing North American Library and Information Science dissertations using latent Dirichlet allocation," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(1), pages 185-204, January.
    5. Sein León-Silva & Fabián Fernández-Luqueño & Edgar Záyago-Lau & Fernando López-Valdez, 2020. "Silver nanoparticles, research and development in Mexico: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 31-49, April.
    6. Lai, Kuei-Kuei & Bhatt, Priyanka C. & Kumar, Vimal & Chen, Hsueh-Chen & Chang, Yu-Hsin & Su, Fang-Pei, 2021. "Identifying the impact of patent family on the patent trajectory: A case of thin film solar cells technological trajectories," Journal of Informetrics, Elsevier, vol. 15(2).
    7. J. van Der Pol & J-P. Rameshkoumar & D. Virapin & B. Zozime, 2015. "The co-evolution of knowledge and collaboration networks: the role of the technology life-cycle," Post-Print hal-02269511, HAL.
    8. Nguyen Thanh Viet & Alla G. Kravets, 2022. "The New Method for Analyzing Technology Trends of Smart Energy Asset Performance Management," Energies, MDPI, vol. 15(18), pages 1-26, September.
    9. Jingbei Wang & Naiding Yang, 2019. "Dynamics of collaboration network community and exploratory innovation: the moderation of knowledge networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 1067-1084, November.
    10. Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
    11. Sungchul Choi & Janghyeok Yoon & Kwangsoo Kim & Jae Yeol Lee & Cheol-Han Kim, 2011. "SAO network analysis of patents for technology trends identification: a case study of polymer electrolyte membrane technology in proton exchange membrane fuel cells," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(3), pages 863-883, September.
    12. Huailan Liu & Zhiwang Chen & Jie Tang & Yuan Zhou & Sheng Liu, 2020. "Mapping the technology evolution path: a novel model for dynamic topic detection and tracking," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2043-2090, December.
    13. Arash Hajikhani & Arho Suominen, 2022. "Mapping the sustainable development goals (SDGs) in science, technology and innovation: application of machine learning in SDG-oriented artefact detection," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6661-6693, November.
    14. Cassidy R. Sugimoto & Daifeng Li & Terrell G. Russell & S. Craig Finlay & Ying Ding, 2011. "The shifting sands of disciplinary development: Analyzing North American Library and Information Science dissertations using latent Dirichlet allocation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(1), pages 185-204, January.
    15. Lee, Changyong & Kang, Bokyoung & Shin, Juneseuk, 2015. "Novelty-focused patent mapping for technology opportunity analysis," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 355-365.
    16. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Liu, Ziqiang & Yuan, Guoting, 2020. "Topic-linked innovation paths in science and technology," Journal of Informetrics, Elsevier, vol. 14(2).
    17. Moreno La Quatra & Luca Cagliero & Elena Baralis, 2020. "Exploiting pivot words to classify and summarize discourse facets of scientific papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 3139-3157, December.
    18. Chao Yang & Donghua Zhu & Xuefeng Wang & Yi Zhang & Guangquan Zhang & Jie Lu, 2017. "Requirement-oriented core technological components’ identification based on SAO analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1229-1248, September.
    19. Wang, Ming-Yeu & Fang, Shih-Chieh & Chang, Yu-Hsuan, 2015. "Exploring technological opportunities by mining the gaps between science and technology: Microalgal biofuels," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 182-195.
    20. Shuo Xu & Ling Li & Xin An & Liyuan Hao & Guancan Yang, 2021. "An approach for detecting the commonality and specialty between scientific publications and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7445-7475, September.
    21. Xiwen Liu & Xuezhao Wang & Lucheng Lyu & Yanpeng Wang, 2022. "Identifying disruptive technologies by integrating multi-source data," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5325-5351, September.
    22. Xuefeng Wang & Pingping Ma & Ying Huang & Junfang Guo & Donghua Zhu & Alan L. Porter & Zhinan Wang, 2017. "Combining SAO semantic analysis and morphology analysis to identify technology opportunities," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 3-24, April.
    23. Takano, Yasutomo & Kajikawa, Yuya, 2019. "Extracting commercialization opportunities of the Internet of Things: Measuring text similarity between papers and patents," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 45-68.
    24. Ba, Zhichao & Liang, Zhentao, 2021. "A novel approach to measuring science-technology linkage: From the perspective of knowledge network coupling," Journal of Informetrics, Elsevier, vol. 15(3).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ba, Zhichao & Meng, Kai & Ma, Yaxue & Xia, Yikun, 2024. "Discovering technological opportunities by identifying dynamic structure-coupling patterns and lead-lag distance between science and technology," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    2. Kang, Inje & Yang, Jiseong & Lee, Wonjae & Seo, Eun-Yeong & Lee, Duk Hee, 2023. "Delineating development trends of nanotechnology in the semiconductor industry: Focusing on the relationship between science and technology by employing structural topic model," Technology in Society, Elsevier, vol. 74(C).
    3. Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
    4. Shuo Xu & Ling Li & Xin An, 2023. "Do academic inventors have diverse interests?," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1023-1053, February.
    5. Han, Xiaotong & Zhu, Donghua & Lei, Ming & Daim, Tugrul, 2021. "R&D trend analysis based on patent mining: An integrated use of patent applications and invalidation data," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    6. Li, Xin & Wu, Yundi & Cheng, Haolun & Xie, Qianqian & Daim, Tugrul, 2023. "Identifying technology opportunity using SAO semantic mining and outlier detection method: A case of triboelectric nanogenerator technology," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    7. Teng, Hao & Wang, Nan & Zhao, Hongyu & Hu, Yingtong & Jin, Haitao, 2024. "Enhancing semantic text similarity with functional semantic knowledge (FOP) in patents," Journal of Informetrics, Elsevier, vol. 18(1).
    8. Gaizka Garechana & Rosa Río-Belver & Enara Zarrabeitia & Izaskun Alvarez-Meaza, 2022. "TeknoAssistant : a domain specific tech mining approach for technical problem-solving support," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5459-5473, September.
    9. He, Xi-jun & Meng, Xue & Dong, Yan-bo & Wu, Yu-ying, 2019. "Demand identification model of potential technology based on SAO structure semantic analysis: The case of new energy and energy saving fields," Technology in Society, Elsevier, vol. 58(C).
    10. Yi Bu & Binglu Wang & Win-bin Huang & Shangkun Che & Yong Huang, 2018. "Using the appearance of citations in full text on author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 275-289, July.
    11. Lee, Changyong & Jeon, Daeseong & Ahn, Joon Mo & Kwon, Ohjin, 2020. "Navigating a product landscape for technology opportunity analysis: A word2vec approach using an integrated patent-product database," Technovation, Elsevier, vol. 96.
    12. Jinzhu Zhang & Wenqian Yu, 2020. "Early detection of technology opportunity based on analogy design and phrase semantic representation," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 551-576, October.
    13. Wu, Yingwen & Ji, Yangjian, 2023. "Identifying firm-specific technology opportunities from the perspective of competitors by using association rule mining," Journal of Informetrics, Elsevier, vol. 17(2).
    14. Park, Mingyu & Geum, Youngjung, 2022. "Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    15. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
    16. John Rigby & Barbara Jones, 2020. "Bringing the doctoral thesis by published papers to the Social Sciences and the Humanities: A quantitative easing? A small study of doctoral thesis submission rules and practice in two disciplines in ," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1387-1409, August.
    17. Chen, Xi & Mao, Jin & Li, Gang, 2024. "A co-citation approach to the analysis on the interaction between scientific and technological knowledge," Journal of Informetrics, Elsevier, vol. 18(3).
    18. Beibei Hu & Xianlei Dong & Chenwei Zhang & Timothy D. Bowman & Ying Ding & Staša Milojević & Chaoqun Ni & Erjia Yan & Vincent Larivière, 2015. "A lead-lag analysis of the topic evolution patterns for preprints and publications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(12), pages 2643-2656, December.
    19. Li, Xin & Wang, Yan, 2024. "A novel integrated approach for quantifying the convergence of disruptive technologies from science to technology," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
    20. Abhijit Thakuria & Dipen Deka, 2024. "A decadal study on identifying latent topics and research trends in open access LIS journals using topic modeling approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 3841-3869, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:129:y:2024:i:4:d:10.1007_s11192-024-04961-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.