IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0324933.html
   My bibliography  Save this article

Analyzing the evolutionary trajectory of technological themes based on the BERTopic model: A case study in the field of artificial intelligence

Author

Listed:
  • Xinle Zheng
  • Qing Wu
  • Xingyu Luo
  • Kun Lv

Abstract

As the wave of technological innovation propels national development into the future, technological advancement has emerged as a crucial pillar for enhancing international competitiveness. Unraveling the evolutionary trajectory of technologies and their associated themes provides a solid theoretical foundation for strategic decision-making in fostering future industrial technological upgrades, thereby aiding in seizing the initiative in technological innovation. This study, adopts a multi-source data perspective, employing the life cycle theory to delineate temporal windows. We use the BERTopic model to extract technological themes and construct a co-occurrence network of theme keywords. Three network centrality indices are computed to filter key theme terms, and the Word2Vec model is leveraged to calculate cosine similarities. Ultimately, we map out the evolutionary pathway of technological themes using Sankey diagrams. Taking the field of artificial intelligence as an example, the study found that the proposed method could effectively identify 48 technical theme keywords and analyze the technological evolution paths of these keywords in areas such as scenario applications, network services, human-computer interaction, intelligent detection, and natural language processing. Furthermore, all evaluation metrics of the model outperformed those of comparable topic models. The rationality of the empirical results was validated through examination against national policies and market application scenarios.

Suggested Citation

  • Xinle Zheng & Qing Wu & Xingyu Luo & Kun Lv, 2025. "Analyzing the evolutionary trajectory of technological themes based on the BERTopic model: A case study in the field of artificial intelligence," PLOS ONE, Public Library of Science, vol. 20(6), pages 1-23, June.
  • Handle: RePEc:plo:pone00:0324933
    DOI: 10.1371/journal.pone.0324933
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0324933
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0324933&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0324933?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Augustinus, Clarissa, 2020. "Catalysing global and local social change in the land sector through technical innovation by the United Nations and the Global Land Tool Network," Land Use Policy, Elsevier, vol. 99(C).
    2. Momeni, Abdolreza & Rost, Katja, 2016. "Identification and monitoring of possible disruptive technologies by patent-development paths and topic modeling," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 16-29.
    3. Xiwen Liu & Xuezhao Wang & Lucheng Lyu & Yanpeng Wang, 2022. "Identifying disruptive technologies by integrating multi-source data," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5325-5351, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minhao Xiang & Dian Fu & Kun Lv, 2023. "Identifying and Predicting Trends of Disruptive Technologies: An Empirical Study Based on Text Mining and Time Series Forecasting," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    2. Jeong, Yujin & Park, Inchae & Yoon, Byungun, 2019. "Identifying emerging Research and Business Development (R&BD) areas based on topic modeling and visualization with intellectual property right data," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 655-672.
    3. Rathi, Sawan & Majumdar, Adrija & Chatterjee, Chirantan, 2024. "Did the COVID-19 pandemic propel usage of AI in pharmaceutical innovation? New evidence from patenting data," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    4. Li, Xin & Xie, Qianqian & Jiang, Jiaojiao & Zhou, Yuan & Huang, Lucheng, 2019. "Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 687-705.
    5. Cheng, Yu & Huang, Lucheng & Ramlogan, Ronnie & Li, Xin, 2017. "Forecasting of potential impacts of disruptive technology in promising technological areas: Elaborating the SIRS epidemic model in RFID technology," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 170-183.
    6. Leonid Gokhberg & Ilya Kuzminov & Pavel Bakhtin & Elena Tochilina & Alexander Chulok & Anton Timofeev & Alina Lavrinenko, 2017. "Big-Data-Augmented Approach to Emerging Technologies Identification: Case of Agriculture and Food Sector," HSE Working papers WP BRP 76/STI/2017, National Research University Higher School of Economics.
    7. Xiwen Liu & Xuezhao Wang & Lucheng Lyu & Yanpeng Wang, 2022. "Identifying disruptive technologies by integrating multi-source data," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5325-5351, September.
    8. Simon Hull & Jennifer Whittal, 2021. "Do Design Science Research and Design Thinking Processes Improve the ‘Fit’ of the Fit-For-Purpose Approach to Securing Land Tenure for All in South Africa?," Land, MDPI, vol. 10(5), pages 1-26, May.
    9. Teso, E. & Olmedilla, M. & Martínez-Torres, M.R. & Toral, S.L., 2018. "Application of text mining techniques to the analysis of discourse in eWOM communications from a gender perspective," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 131-142.
    10. Danilo Antonio & Solomon Njogu & Hellen Nyamweru & John Gitau, 2021. "Transforming Land Administration Practices through the Application of Fit-For-Purpose Technologies: Country Case Studies in Africa," Land, MDPI, vol. 10(5), pages 1-16, May.
    11. Li, Xin & Wang, Yan, 2024. "A novel integrated approach for quantifying the convergence of disruptive technologies from science to technology," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
    12. Wang, Lili & Jiang, Shan & Zhang, Shiyun, 2020. "Mapping technological trajectories and exploring knowledge sources: A case study of 3D printing technologies," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    13. Anne Parlina & Kalamullah Ramli & Hendri Murfi, 2021. "Exposing Emerging Trends in Smart Sustainable City Research Using Deep Autoencoders-Based Fuzzy C-Means," Sustainability, MDPI, vol. 13(5), pages 1-28, March.
    14. Juite Wang & Tzu-Yen Hsu, 2023. "Early discovery of emerging multi-technology convergence for analyzing technology opportunities from patent data: the case of smart health," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4167-4196, August.
    15. Junwei Ma & Jianhua Wang & Philip Szmedra, 2019. "Sustainable Competitive Position of Mobile Communication Companies: Comprehensive Perspectives of Insiders and Outsiders," Sustainability, MDPI, vol. 11(7), pages 1-15, April.
    16. Roh, Taeyeoun & Yoon, Byungun, 2023. "Discovering technology and science innovation opportunity based on sentence generation algorithm," Journal of Informetrics, Elsevier, vol. 17(2).
    17. Uchendu Eugene Chigbu & Tobias Bendzko & Menare Royal Mabakeng & Elias Danyi Kuusaana & Derek Osei Tutu, 2021. "Fit-for-Purpose Land Administration from Theory to Practice: Three Demonstrative Case Studies of Local Land Administration Initiatives in Africa," Land, MDPI, vol. 10(5), pages 1-24, May.
    18. Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," MPRA Paper 123361, University Library of Munich, Germany.
    19. Sommarberg, Matti & Mäkinen, Saku J., 2019. "A method for anticipating the disruptive nature of digitalization in the machine-building industry," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 808-819.
    20. Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0324933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.