IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v119y2019i1d10.1007_s11192-019-03033-y.html
   My bibliography  Save this article

Analysing the theoretical roots of technology emergence: an evolutionary perspective

Author

Listed:
  • Serhat Burmaoglu

    (Izmir Katip Celebi University
    Georgia Institute of Technology)

  • Olivier Sartenaer

    (University of Cologne)

  • Alan Porter

    (Georgia Institute of Technology
    Search Technology)

  • Munan Li

    (South China University of Technology)

Abstract

There has been much research concerning emergence in technology, ever since knowledge has been accepted as a prime engine of economic growth. However, even though there are a growing number of publications, the concept remains ambiguous. In this study, we aim to trace emergence discussions to find the evolution of related concepts, in order to explore usage in the technological context. To achieve this, the philosophy of science, complexity, and economic literatures are reviewed in accordance with the emergence concept qualitatively. Then, a bibliometrics study is performed to strengthen the qualitative argument and find evidence of emergence in technology studies for comparison. Based on the findings, we can assert that the definition of technology emergence needs to be revised with consideration of its theoretical foundations. Moreover, after discussion, research questions are posed for future research.

Suggested Citation

  • Serhat Burmaoglu & Olivier Sartenaer & Alan Porter & Munan Li, 2019. "Analysing the theoretical roots of technology emergence: an evolutionary perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 97-118, April.
  • Handle: RePEc:spr:scient:v:119:y:2019:i:1:d:10.1007_s11192-019-03033-y
    DOI: 10.1007/s11192-019-03033-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-019-03033-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-019-03033-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Foster, John & Metcalfe, J. Stan, 2012. "Economic emergence: An evolutionary economic perspective," Journal of Economic Behavior & Organization, Elsevier, vol. 82(2), pages 420-432.
    2. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
    3. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    4. Li, Munan & Porter, Alan L. & Suominen, Arho, 2018. "Insights into relationships between disruptive technology/innovation and emerging technology: A bibliometric perspective," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 285-296.
    5. Ivan Jarić & Jelena Knežević-Jarić & Mirjana Lenhardt, 2014. "Relative age of references as a tool to identify emerging research fields with an application to the field of ecology and environmental sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(2), pages 519-529, August.
    6. Peter Frederiksen & Tue Jagtfelt, 2013. "Exponential Expansion in Evolutionary Economics: A Model Proposition," Journal of Economic Issues, Taylor & Francis Journals, vol. 47(3), pages 705-718.
    7. Krzysztof Klincewicz, 2016. "The emergent dynamics of a technological research topic: the case of graphene," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 319-345, January.
    8. Ávila-Robinson, Alfonso & Miyazaki, Kumiko, 2013. "Dynamics of scientific knowledge bases as proxies for discerning technological emergence — The case of MEMS/NEMS technologies," Technological Forecasting and Social Change, Elsevier, vol. 80(6), pages 1071-1084.
    9. Low, Brian & Johnston, Wesley, 2012. "Emergent technologies, network paradoxes, and incrementalism," Journal of Business Research, Elsevier, vol. 65(6), pages 821-828.
    10. Kwon, Heeyeul & Kim, Jieun & Park, Yongtae, 2017. "Applying LSA text mining technique in envisioning social impacts of emerging technologies: The case of drone technology," Technovation, Elsevier, vol. 60, pages 15-28.
    11. Gustafsson, Robin & Kuusi, Osmo & Meyer, Martin, 2015. "Examining open-endedness of expectations in emerging technological fields: The case of cellulosic ethanol," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 179-193.
    12. Florian Kreuchauff & Vladimir Korzinov, 2017. "A patent search strategy based on machine learning for the emerging field of service robotics," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 743-772, May.
    13. Munier, Francis & Ronde, Patrick, 2001. "The role of knowledge codification in the emergence of consensus under uncertainty: empirical analysis and policy implications," Research Policy, Elsevier, vol. 30(9), pages 1537-1551, December.
    14. van Rijnsoever, Frank J. & van den Berg, Jesse & Koch, Joost & Hekkert, Marko P., 2015. "Smart innovation policy: How network position and project composition affect the diversity of an emerging technology," Research Policy, Elsevier, vol. 44(5), pages 1094-1107.
    15. Martin, Ron & Sunley, Peter, 2012. "Forms of emergence and the evolution of economic landscapes," Journal of Economic Behavior & Organization, Elsevier, vol. 82(2), pages 338-351.
    16. Harper, David A. & Endres, Anthony M., 2012. "The anatomy of emergence, with a focus upon capital formation," Journal of Economic Behavior & Organization, Elsevier, vol. 82(2), pages 352-367.
    17. Stephen F. Carley & Nils C. Newman & Alan L. Porter & Jon G. Garner, 2017. "A measure of staying power: Is the persistence of emergent concepts more significantly influenced by technical domain or scale?," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 2077-2087, June.
    18. Woodson, Thomas S., 2016. "Public private partnerships and emerging technologies: A look at nanomedicine for diseases of poverty," Research Policy, Elsevier, vol. 45(7), pages 1410-1418.
    19. Lee, Changyong & Kwon, Ohjin & Kim, Myeongjung & Kwon, Daeil, 2018. "Early identification of emerging technologies: A machine learning approach using multiple patent indicators," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 291-303.
    20. Small, Henry & Boyack, Kevin W. & Klavans, Richard, 2014. "Identifying emerging topics in science and technology," Research Policy, Elsevier, vol. 43(8), pages 1450-1467.
    21. Surie, Gita, 2013. "Innovating via emergent technology and distributed organization: A case of biofuel production in India," Technological Forecasting and Social Change, Elsevier, vol. 80(2), pages 253-266.
    22. Geoffrey M. Hodgson, 2002. "Darwinism in economics: from analogy to ontology," Journal of Evolutionary Economics, Springer, vol. 12(3), pages 259-281.
    23. S. Phineas Upham & Henry Small, 2010. "Emerging research fronts in science and technology: patterns of new knowledge development," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(1), pages 15-38, April.
    24. Stephen F. Carley & Nils C. Newman & Alan L. Porter & Jon G. Garner, 2018. "An indicator of technical emergence," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 35-49, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    2. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Zhang, Huiling & Pang, Hongshen, 2021. "Multidimensional Scientometric indicators for the detection of emerging research topics," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    3. Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    4. Xiaoyu Liu & Alan L. Porter, 2020. "A 3-dimensional analysis for evaluating technology emergence indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 27-55, July.
    5. Kwon, Seokbeom & Liu, Xiaoyu & Porter, Alan L. & Youtie, Jan, 2019. "Research addressing emerging technological ideas has greater scientific impact," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    6. Porter, Alan L. & Chiavetta, Denise & Newman, Nils C., 2020. "Measuring tech emergence: A contest," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    7. Li, Munan & Porter, Alan L. & Suominen, Arho & Burmaoglu, Serhat & Carley, Stephen, 2021. "An exploratory perspective to measure the emergence degree for a specific technology based on the philosophy of swarm intelligence," Technological Forecasting and Social Change, Elsevier, vol. 166(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burmaoglu, Serhat & Sartenaer, Olivier & Porter, Alan, 2019. "Conceptual definition of technology emergence: A long journey from philosophy of science to science policy," Technology in Society, Elsevier, vol. 59(C).
    2. Kwon, Seokbeom & Liu, Xiaoyu & Porter, Alan L. & Youtie, Jan, 2019. "Research addressing emerging technological ideas has greater scientific impact," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    3. Porter, Alan L. & Chiavetta, Denise & Newman, Nils C., 2020. "Measuring tech emergence: A contest," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    4. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Zhang, Huiling & Pang, Hongshen, 2021. "Multidimensional Scientometric indicators for the detection of emerging research topics," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    5. Xiaoyu Liu & Alan L. Porter, 2020. "A 3-dimensional analysis for evaluating technology emergence indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 27-55, July.
    6. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    7. Porter, Alan L. & Garner, Jon & Carley, Stephen F. & Newman, Nils C., 2019. "Emergence scoring to identify frontier R&D topics and key players," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 628-643.
    8. Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    9. Woo, Seokkyun & Youtie, Jan & Ott, Ingrid & Scheu, Fenja, 2021. "Understanding the long-term emergence of autonomous vehicles technologies," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    10. Ki Hong Kim & Young Jae Han & Sugil Lee & Sung Won Cho & Chulung Lee, 2019. "Text Mining for Patent Analysis to Forecast Emerging Technologies in Wireless Power Transfer," Sustainability, MDPI, Open Access Journal, vol. 11(22), pages 1-24, November.
    11. Li, Munan & Porter, Alan L. & Suominen, Arho & Burmaoglu, Serhat & Carley, Stephen, 2021. "An exploratory perspective to measure the emergence degree for a specific technology based on the philosophy of swarm intelligence," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    12. Xu, Shuo & Hao, Liyuan & An, Xin & Yang, Guancan & Wang, Feifei, 2019. "Emerging research topics detection with multiple machine learning models," Journal of Informetrics, Elsevier, vol. 13(4).
    13. Wang, Zhinan & Porter, Alan L. & Wang, Xuefeng & Carley, Stephen, 2019. "An approach to identify emergent topics of technological convergence: A case study for 3D printing," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 723-732.
    14. Samira Ranaei & Arho Suominen & Alan Porter & Stephen Carley, 2020. "Evaluating technological emergence using text analytics: two case technologies and three approaches," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 215-247, January.
    15. Xiao Zhou & Lu Huang & Yi Zhang & Miaomiao Yu, 2019. "A hybrid approach to detecting technological recombination based on text mining and patent network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 699-737, November.
    16. Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
    17. Paige Clayton & Maryann Feldman & Benjamin Montmartin, 2019. "Funding Emerging Ecosystems," GREDEG Working Papers 2019-25, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    18. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2021. "The use of citation context to detect the evolution of research topics: a large-scale analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2971-2989, April.
    19. Jinho Choi & Nina Shin & Yong Sik Chang, 2021. "Strategic Investment Decisions for Emerging Technology Fields in the Health Care Sector Based on M&A Analysis," Sustainability, MDPI, Open Access Journal, vol. 13(7), pages 1-20, March.
    20. Yuan Zhou & Heng Lin & Yufei Liu & Wei Ding, 2019. "A novel method to identify emerging technologies using a semi-supervised topic clustering model: a case of 3D printing industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 167-185, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:119:y:2019:i:1:d:10.1007_s11192-019-03033-y. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.