A Simple Adaptation of Variable Selection Software for Regression Models to Select Variables in Nested Error Regression Models
Author
Abstract
Suggested Citation
DOI: 10.1007/s13571-018-0161-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, Enero-Abr.
- Florin Vaida & Suzette Blanchard, 2005. "Conditional Akaike information for mixed-effects models," Biometrika, Biometrika Trust, vol. 92(2), pages 351-370, June.
- Jiming Jiang & P. Lahiri, 2006. "Mixed model prediction and small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-96, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yan Li, 2020. "Discussion of "Small area estimation: its evolution in five decades", by Malay Ghosh," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 35-39, August.
- Merfeld, Joshua D. & Newhouse, David & Weber, Michael & Lahiri, Partha, 2022.
"Combining Survey and Geospatial Data Can Significantly Improve Gender-Disaggregated Estimates of Labor Market Outcomes,"
Policy Research Working Paper Series
10077, The World Bank.
- Merfeld, Joshua D. & Newhouse, David & Weber, Michael & Lahiri, Partha, 2022. "Combining Survey and Geospatial Data Can Significantly Improve Gender-Disaggregated Estimates of Labor Market Outcomes," IZA Discussion Papers 15390, Institute of Labor Economics (IZA).
- Cai Song & Rao J. N. K. & Dumitrescu Laura & Chatrchi Golshid, 2020. "Effective transformation-based variable selection under two-fold subarea models in small area estimation," Statistics in Transition New Series, Statistics Poland, vol. 21(4), pages 68-83, August.
- Song Cai & J. N. K. Rao & Laura Dumitrescu & Golshid Chatrchi, 2020. "Effective transformation-based variable selection under two-fold subarea models in small area estimation," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 68-83, August.
- Song Cai & J.N.K. Rao, 2022. "Selection of Auxiliary Variables for Three-Fold Linking Models in Small Area Estimation: A Simple and Effective Method," Stats, MDPI, vol. 5(1), pages 1-11, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Braun, Julia & Sabanés Bové, Daniel & Held, Leonhard, 2014. "Choice of generalized linear mixed models using predictive crossvalidation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 190-202.
- María José Lombardía & Esther López-Vizcaíno & Cristina Rueda, 2021. "Selection model for domains across time: application to labour force survey by economic activities," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 228-254, March.
- J. N. K. Rao, 2015. "Inferential Issues In Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 491-510, December.
- Xinyu Zhang & Alan T. K. Wan & Sherry Z. Zhou, 2011. "Focused Information Criteria, Model Selection, and Model Averaging in a Tobit Model With a Nonzero Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 132-142, June.
- Charlotte Articus & Jan Pablo Burgard, 2014. "A Finite Mixture Fay Herriot-type model for estimating regional rental prices in Germany," Research Papers in Economics 2014-14, University of Trier, Department of Economics.
- Julia Braun & Leonhard Held & Bruno Ledergerber, 2012. "Predictive Cross-validation for the Choice of Linear Mixed-Effects Models with Application to Data from the Swiss HIV Cohort Study," Biometrics, The International Biometric Society, vol. 68(1), pages 53-61, March.
- Stefan Sperlich, 2013. "Comments on: Model-free model-fitting and predictive distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 227-233, June.
- Bart Buelens & Jan A. van den Brakel, 2015. "Covariate selection for small area estimation in repeated sample surveys," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 523-540, December.
- J. N. K. Rao, 2015. "Inferential issues in model-based small area estimation: some new developments," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 491-510, December.
- Wei, Yuting & Wang, Qihua & Duan, Xiaogang & Qin, Jing, 2021. "Bias-corrected Kullback–Leibler distance criterion based model selection with covariables missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
- Rao J. N. K., 2015. "Inferential Issues in Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Statistics Poland, vol. 16(4), pages 491-510, December.
- van den Brakel Jan A. & Buelens Bart, 2015. "Covariate Selection for Small Area Estimation in Repeated Sample Surveys," Statistics in Transition New Series, Statistics Poland, vol. 16(4), pages 523-540, December.
- Jan A. van den Brakel & Bart Buelens, 2015. "Covariate Selection For Small Area Estimation In Repeated Sample Surveys," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 523-540, December.
- Bijlsma Ineke & van den Brakel Jan & van der Velden Rolf & Allen Jim, 2020.
"Estimating Literacy Levels at a Detailed Regional Level: an Application Using Dutch Data,"
Journal of Official Statistics, Sciendo, vol. 36(2), pages 251-274, June.
- Bijlsma Ineke & van den Brakel Jan & van der Velden Rolf & Allen Jim, 2020. "Estimating Literacy Levels at a Detailed Regional Level: an Application Using Dutch Data," Journal of Official Statistics, Sciendo, vol. 36(2), pages 251-274, June.
- Bijlsma, Ineke & van den Brakel, Jan & van der Velden, Rolf & Allen, James, 2017. "Estimating literacy levels at a detailed regional level: An application using Dutch data," ROA Research Memorandum 006, Maastricht University, Research Centre for Education and the Labour Market (ROA).
- Bijlsma, Ineke & van den Brakel, Jan & van der Velden, Rolf & Allen, James, 2017. "Estimating literacy levels at a detailed regional level: An application using Dutch data," Research Memorandum 018, Maastricht University, Graduate School of Business and Economics (GSBE).
- K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
- Jie Huang & Haiming Zhou & Nader Ebrahimi, 2022. "Bayesian Bivariate Cure Rate Models Using Copula Functions," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 11(3), pages 1-9, May.
- Jeffrey S. Racine & Qi Li & Dalei Yu & Li Zheng, 2023.
"Optimal Model Averaging of Mixed-Data Kernel-Weighted Spline Regressions,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1251-1261, October.
- Jeffrey S. Racine & Qi Li & Li Zheng, 2018. "Optimal Model Averaging of Mixed-Data Kernel-Weighted Spline Regressions," Department of Economics Working Papers 2018-10, McMaster University.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Davide Fiaschi & Andrea Mario Lavezzi & Angela Parenti, 2020. "Deep and Proximate Determinants of the World Income Distribution," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 66(3), pages 677-710, September.
- Jan Pablo Burgard & Ralf Münnich, 2015. "Sae Teaching Using Simulations," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 603-610, December.
More about this item
Keywords
Fuller-Battese transformation; Intracluster correlation; Lahiri-Li transformation; Variable selection criteria;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:81:y:2019:i:2:d:10.1007_s13571-018-0161-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.