IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v58y2024i3d10.1007_s11135-023-01619-6.html
   My bibliography  Save this article

Investigation of femicide in Turkey: modeling time series of counts

Author

Listed:
  • Aygül Anavatan

    (Pamukkale University)

  • Eda Yalçın Kayacan

    (Pamukkale University)

Abstract

This study aims to reveal the relationship between the number of femicide in Turkey, the female unemployment rate, the male unemployment rate, and inflation. The contribution of the study to the literature is that it estimates the relationship between femicides and macroeconomic variables with a method that incorporates the count data. The dataset was analyzed by using the INGARCH model, one of the most popular approaches for count time series data. This model is particularly attractive for dealing with serial dependence and over-dispersion. The findings revealed that an increase in the female unemployment rate and a decrease in the male unemployment rate increases the number of femicide. In addition, it was observed that the number of femicide in the previous month had a negative effect on the current month’s number. Increasing the employment rate of women, and women's economic freedom generally, are essential factors in reducing femicide. To prevent femicides, policymakers should aim to increase women's employment.

Suggested Citation

  • Aygül Anavatan & Eda Yalçın Kayacan, 2024. "Investigation of femicide in Turkey: modeling time series of counts," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(3), pages 2013-2028, June.
  • Handle: RePEc:spr:qualqt:v:58:y:2024:i:3:d:10.1007_s11135-023-01619-6
    DOI: 10.1007/s11135-023-01619-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-023-01619-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-023-01619-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. José L Torrecilla & Lara Quijano-Sánchez & Federico Liberatore & Juan J López-Ossorio & José L González-Álvarez, 2019. "Correction: Evolution and study of a copycat effect in intimate partner homicides: A lesson from Spanish femicides," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-1, October.
    2. Durrance, Christine Piette & Golden, Shelley & Perreira, Krista & Cook, Philip, 2011. "Taxing sin and saving lives: Can alcohol taxation reduce female homicides?," Social Science & Medicine, Elsevier, vol. 73(1), pages 169-176, July.
    3. Hatice Öncel Çekim & Ahmet Koyuncu, 2022. "The Impact of Google Trends on the Tourist Arrivals: A Case of Antalya Tourism," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 10(1), pages 1-14, June.
    4. Sofia Amaral & Sonia Bhalotra & Nishith Prakash, 2019. "Gender, Crime and Punishment: Evidence from Women Police Stations in India," Boston University - Department of Economics - The Institute for Economic Development Working Papers Series dp-309, Boston University - Department of Economics.
    5. Jorge M. Agüero, 2019. "Information and Behavioral Responses with More than One Agent: The Case of Domestic Violence Awareness Campaigns," Working papers 2019-04, University of Connecticut, Department of Economics.
    6. René Ferland & Alain Latour & Driss Oraichi, 2006. "Integer‐Valued GARCH Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(6), pages 923-942, November.
    7. Fukang Zhu, 2011. "A negative binomial integer‐valued GARCH model," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(1), pages 54-67, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    2. Huiyu Mao & Fukang Zhu & Yan Cui, 2020. "A generalized mixture integer-valued GARCH model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(3), pages 527-552, September.
    3. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    4. Ali Ahmad & Christian Francq, 2016. "Poisson QMLE of Count Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 291-314, May.
    5. Xu, Hai-Yan & Xie, Min & Goh, Thong Ngee & Fu, Xiuju, 2012. "A model for integer-valued time series with conditional overdispersion," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4229-4242.
    6. Lanyu Xiong & Fukang Zhu, 2024. "Robust estimation for the one-parameter exponential family integer-valued GARCH(1,1) models based on a modified Tukey’s biweight function," Computational Statistics, Springer, vol. 39(2), pages 495-522, April.
    7. Cui, Yunwei & Zheng, Qi, 2017. "Conditional maximum likelihood estimation for a class of observation-driven time series models for count data," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 193-201.
    8. Aknouche, Abdelhakim & Gouveia, Sonia & Scotto, Manuel, 2023. "Random multiplication versus random sum: auto-regressive-like models with integer-valued random inputs," MPRA Paper 119518, University Library of Munich, Germany, revised 18 Dec 2023.
    9. Tianqing Liu & Xiaohui Yuan, 2013. "Random rounded integer-valued autoregressive conditional heteroskedastic process," Statistical Papers, Springer, vol. 54(3), pages 645-683, August.
    10. Weiß, Christian H. & Zhu, Fukang, 2024. "Conditional-mean multiplicative operator models for count time series," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    11. Fukang Zhu & Lei Shi & Shuangzhe Liu, 2015. "Influence diagnostics in log-linear integer-valued GARCH models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(3), pages 311-335, July.
    12. Aknouche, Abdelhakim & Bentarzi, Wissam & Demouche, Nacer, 2017. "On periodic ergodicity of a general periodic mixed Poisson autoregression," MPRA Paper 79650, University Library of Munich, Germany.
    13. Li, Qi & Lian, Heng & Zhu, Fukang, 2016. "Robust closed-form estimators for the integer-valued GARCH (1,1) model," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 209-225.
    14. Mengya Liu & Qi Li & Fukang Zhu, 2020. "Self-excited hysteretic negative binomial autoregression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(3), pages 385-415, September.
    15. Yue Xu & Fukang Zhu, 2022. "A new GJR‐GARCH model for ℤ‐valued time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 490-500, May.
    16. Mamadou Lamine Diop & William Kengne, 2017. "Testing Parameter Change in General Integer-Valued Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 880-894, November.
    17. Yunwei Cui & Rongning Wu & Qi Zheng, 2021. "Estimation of change‐point for a class of count time series models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1277-1313, December.
    18. Yang Lu, 2021. "The predictive distributions of thinning‐based count processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 42-67, March.
    19. Wagner Barreto‐Souza & Hernando Ombao, 2022. "The negative binomial process: A tractable model with composite likelihood‐based inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 568-592, June.
    20. Vasiliki Christou & Konstantinos Fokianos, 2014. "Quasi-Likelihood Inference For Negative Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 55-78, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:58:y:2024:i:3:d:10.1007_s11135-023-01619-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.